Namo-R1/train_mdpo.py
2025-02-22 12:25:49 +08:00

336 lines
11 KiB
Python

"""
Code referenced from:
InternVL mDPO
"""
import math
import os
import random
import shutil
import sys
import traceback
from copy import copy, deepcopy
from dataclasses import dataclass, field
from typing import Dict, Literal, Optional
from loguru import logger
import numpy as np
import json
import torch
import torch.distributed as dist
import transformers
from namo.dataargs import DataArguments, ModelArguments
from namo.dataset_dpo import dpo_concat_pad_data_collator, WeightedConcatDataset
from namo.dataset_dpo import build_datasets
from namo.models.configuration_namo import NamoConfig
from namo.models.namo import NamoForCausalLM
from namo.tainer_mdpo import MultimodalDPOTrainer
from PIL import Image, ImageFile, PngImagePlugin, UnidentifiedImageError
from torch.utils.data import Dataset
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils.logging import (
enable_default_handler,
enable_explicit_format,
set_verbosity,
)
from trl import DPOConfig as DPOConfigTRL
from namo.models.symbols import IGNORE_INDEX
from namo.utils.hf_utils import get_latest_checkpoint
from namo.utils.utils import find_all_linear_names, rank0_print
Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
MaximumDecompressedSize = 1024
MegaByte = 2**20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
os.environ["TOKENIZERS_PARALLELISM"] = "true"
class DPOConfig(DPOConfigTRL):
loss_type: Literal[
"sigmoid",
"hinge",
"ipo",
"bco_pair",
"sppo_hard",
"nca_pair",
"robust",
"aot",
"aot_pair",
"exo_pair",
"sigmoid,bco_pair",
] = "sigmoid"
def main(attn_implementation="flash_attention_2"):
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
bnb_model_from_pretrained_args = {}
if training_args.bits in [4, 8]:
from transformers import BitsAndBytesConfig
bnb_model_from_pretrained_args.update(
dict(
device_map={"": training_args.device},
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
llm_int8_skip_modules=["mm_projector"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
),
)
)
if model_args.pretrain_model_path is not None:
pretrain_model_path = get_latest_checkpoint(model_args.pretrain_model_path)
rank0_print(f"==> finetune from pretrained whole model: {pretrain_model_path}")
model = NamoForCausalLM.from_pretrained(pretrain_model_path)
rank0_print("==> pretrained model loaded.")
else:
text_config = AutoConfig.from_pretrained(
model_args.llm_model_path,
trust_remote_code=True,
attn_implementation=attn_implementation,
torch_dtype=compute_dtype,
)
vision_config = AutoConfig.from_pretrained(
model_args.ve_model_path,
trust_remote_code=True,
torch_dtype=compute_dtype,
)
config = NamoConfig(
text_config=text_config,
vision_config=vision_config,
attn_implementation=attn_implementation,
torch_dtype=compute_dtype,
conn_ve_llm_type=model_args.conn_ve_llm_type,
longest_edge=model_args.max_img_size,
**bnb_model_from_pretrained_args,
)
model = NamoForCausalLM(config=config)
# just copy ref model
ref_model = copy(model)
rank0_print(f"==> current model dtype: {model.dtype}, set is: {compute_dtype}")
tokenizer = model.get_namo().tokenizer
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
try:
model.enable_input_require_grads()
except Exception as e:
print(f"enable_input_require_grads: {e}")
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if training_args.lora_enable:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
use_dora=training_args.use_dora,
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
rank0_print("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
if tokenizer.unk_token != None:
tokenizer.pad_token = tokenizer.unk_token
if tokenizer.pad_token_id == None:
rank0_print(f"tokenizer.pad_token: {tokenizer.pad_token}")
if "mistral" in model_args.model_name_or_path.lower():
# important for mistral models
tokenizer.pad_token_id = tokenizer.encode("<pad>")
else:
tokenizer.pad_token_id = tokenizer.encode(
tokenizer.pad_token
if tokenizer.pad_token is not None
else tokenizer.eos_token
)
rank0_print(f"pad_token_id: {tokenizer.pad_token_id}")
if (
model_args.ve_model_path is not None
or model_args.pretrain_model_path is not None
):
logger.info("preparing ve model args...")
# model.get_model().initialize_vision_modules(
# model_args=model_args, fsdp=training_args.fsdp
# )
vision_tower = model.get_vision_tower()
vision_tower.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
device=training_args.device,
)
model.config.unfreeze_ve = training_args.unfreeze_ve = model_args.unfreeze_ve
if training_args.unfreeze_ve:
for p in model.get_vision_tower().parameters():
p.requires_grad = True
model.config.new_img_size = model_args.new_img_size
model.config.longest_edge = data_args.longest_edge = model_args.max_img_size
model.config.dynamic_size = data_args.dynamic_size
vision_tower.image_processor.size["longest_edge"] = data_args.longest_edge
data_args.image_processor = vision_tower.image_processor
data_args.is_multimodal = True
model.config.image_aspect_ratio = data_args.image_aspect_ratio
model.config.video_fps = data_args.video_fps
model.config.video_frames_num = data_args.video_frames_num
model.config.tokenizer_padding_side = tokenizer.padding_side
model.config.tokenizer_model_max_length = tokenizer.model_max_length
model.config.tune_conn_ve_llm = training_args.tune_conn_ve_llm = (
model_args.tune_conn_ve_llm
)
if model_args.tune_conn_ve_llm:
model.requires_grad_(False)
for p in model.get_namo().conn_ve_llm.parameters():
p.requires_grad = True
model.config.freeze_conn_ve_llm = training_args.freeze_conn_ve_llm
if training_args.freeze_conn_ve_llm:
for p in model.get_namo().conn_ve_llm.parameters():
p.requires_grad = False
if training_args.bits in [4, 8]:
model.get_namo().conn_ve_llm.to(
dtype=compute_dtype, device=training_args.device
)
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = (
model_args.mm_use_im_start_end
)
model.config.conn_ve_llm_lr = training_args.conn_ve_llm_lr
model.config.s2 = model_args.s2
model.config.s2_scales = model_args.s2_scales
model.config.s2_max_split_size = model_args.s2_max_split_size
training_args.use_im_start_end = model_args.mm_use_im_start_end
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)
logger.info("Model load finished.")
train_dataset = build_datasets(
data_args,
tokenizer,
None,
model,
group_by_length=training_args.group_by_length,
dynamic_image_size=data_args.dynamic_image_size,
use_thumbnail=data_args.use_thumbnail,
min_dynamic_patch=data_args.min_dynamic_patch,
max_dynamic_patch=data_args.max_dynamic_patch,
normalize_type=data_args.normalize_type,
min_num_frame=data_args.min_num_frame,
max_num_frame=data_args.max_num_frame,
)
def _freeze_params(module):
for param in module.parameters():
param.requires_grad = False
ref_model.eval()
# _freeze_params(ref_model)
# set seed for torch dataloaders
set_seed(training_args.seed)
trainer = MultimodalDPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=None,
tokenizer=tokenizer,
data_collator=dpo_concat_pad_data_collator,
)
# Training
if training_args.do_train:
print(
f"[Memory Usage before training] {torch.cuda.memory_allocated()/1024/1024/1024:.2f}GB"
)
train_result = trainer.train(resume_from_checkpoint=True)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
try:
metrics["train_samples"] = len(train_dataset)
except:
metrics["train_samples"] = -1
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
model_dir = model_args.model_name_or_path
output_dir = training_args.output_dir
for filename in [
"conversation.py",
"modeling_internvl_chat.py",
"modeling_intern_vit.py",
"modeling_internlm2.py",
"configuration_internvl_chat.py",
"configuration_intern_vit.py",
"configuration_internlm2.py",
]:
if os.path.exists(os.path.join(model_dir, filename)):
shutil.copy(os.path.join(model_dir, filename), output_dir)
if __name__ == "__main__":
main()