Namo-R1/scripts/convert_invoices_ocr.py
2025-02-22 12:25:49 +08:00

78 lines
1.8 KiB
Python

"""
convert
https://huggingface.co/datasets/amaye15/invoices-google-ocr/
https://huggingface.co/datasets/mychen76/invoices-and-receipts_ocr_v2
"""
import json
from datasets import load_dataset
import uuid
import os
import ast
import sys
all_res = []
root_path = sys.argv[1]
ds = load_dataset("parquet", data_files=os.path.join(root_path, "data/*.parquet"))
def build_item(item, idx):
# print(item)
new_item = {
"id": f"{idx}",
"image": f"images/{idx}.jpg",
}
new_item["conversations"] = []
os.makedirs("invoices-ocr/images", exist_ok=True)
if "image" in item.keys():
image = item["image"].convert("RGB")
else:
image = item["pixel_values"].convert("RGB")
img_f = os.path.join("invoices-ocr", new_item["image"])
if not os.path.exists(img_f):
image.save(img_f)
if "ocr" in item.keys():
if len(item["ocr"]) < 1:
return None
text = item["ocr"][0]["text"]
else:
a = json.loads(item["raw_data"])
ll = ast.literal_eval(a["ocr_words"])
# print(ll)
text = "\n".join(ll)
new_item["conversations"].append(
{
"from": "human",
"value": "<image>\nRead all text content visible on image in order.",
}
)
new_item["conversations"].append({"from": "gpt", "value": text})
# print(new_item)
return new_item
print(ds.items())
ds_name = os.path.basename(root_path)
idx = 0
for item in ds["train"]:
new_item = build_item(item, f"invoices_{ds_name}_{idx}")
if new_item is None:
continue
all_res.append(new_item)
idx += 1
print(f"all res: {len(all_res)}")
file_path = f"invoices_ocr_{ds_name}.json"
with open(file_path, "w") as f:
json.dump(all_res, f, ensure_ascii=False, indent=2)