[None][fix] DeepSeek-R1 W4A8 weight loading issue; fixes regression from #6200 (#7123)

Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>
This commit is contained in:
Anthony Chang 2025-09-07 00:04:56 +08:00 committed by GitHub
parent 9a97f0a3b7
commit 12c66f7610
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -45,6 +45,7 @@ from tensorrt_llm.functional import PositionEmbeddingType
from tensorrt_llm.llmapi.utils import enable_llm_debug
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization.mode import QuantAlgo
from tensorrt_llm.quantization.utils.fp8_utils import (
resmooth_to_fp8_e8m0, transform_sf_into_required_layout)
@ -468,10 +469,13 @@ class Deepseekv3MoE(nn.Module):
layer_idx=layer_idx,
# DS-R1 W4A8 is only supported through custom quantization script from
# examples/quantization/quantize_mixed_precision_moe.py
weight_loading_mode=(MoEWeightLoadingMode.W4A8_CUSTOM
if model_config.quant_config.quant_mode.
is_int4_weight_only_per_group() else
MoEWeightLoadingMode.VANILLA))
weight_loading_mode=(
MoEWeightLoadingMode.W4A8_CUSTOM
if self._get_experts_quant_config(
model_config,
layer_idx).layer_quant_mode.is_int4_weight_only_per_group()
else MoEWeightLoadingMode.VANILLA),
)
self.mapping = model_config.mapping
@ -536,6 +540,13 @@ class Deepseekv3MoE(nn.Module):
return shared_tp_size, shared_output_scale
@staticmethod
def _get_experts_quant_config(model_config, layer_idx: int) -> QuantConfig:
if getattr(model_config, "quant_config_dict", None) is None:
return model_config.quant_config
return model_config.quant_config_dict.get(
f"model.layers.{layer_idx}.mlp.experts", model_config.quant_config)
def compute_routed_output(self, hidden_states, hidden_states_fp4,
all_rank_num_tokens, all_rank_max_num_tokens,
do_finalize):
@ -657,6 +668,9 @@ class DeepseekV3DecoderLayer(DecoderLayer):
quant_config = self._get_decoder_layer_quant_config(
model_config, layer_idx)
self.is_nvfp4 = quant_config.layer_quant_mode.has_nvfp4()
assert (
quant_config.quant_algo
is not QuantAlgo.MIXED_PRECISION), "MIXED_PRECISION is ambiguous"
has_tp = mapping.has_tp()
self.allreduce = AllReduce(mapping=model_config.mapping,