[TRTLLM-8577][feat] Clean the Qwen3-next code by removing Qwen3NextCo… (#10228)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
This commit is contained in:
Guoming Zhang 2025-12-27 22:49:55 +08:00 committed by GitHub
parent 93ac0bc1dc
commit 1865020b6f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -23,8 +23,7 @@ import torch.nn.functional as F
import triton
import triton.language as tl
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers import Qwen3NextConfig
from tensorrt_llm._torch.models.checkpoints.base_weight_mapper import \
BaseWeightMapper
@ -71,254 +70,6 @@ def divide(numerator, denominator):
return numerator // denominator
class Qwen3NextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen3NextModel`]. It is used to instantiate a
Qwen3-Next model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of
Qwen3-Next-80B-A3B-Instruct [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the model. Defines the number of different tokens that can be represented by the
`inputs_ids`.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 5632):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 48):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 2):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str`, *optional*, defaults to `"silu"`):
The non-linear activation function in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
partial_rotary_factor (`float`, *optional*, defaults to 0.25):
Percentage of the query and keys which will have rotary embedding.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
head_dim (`int`, *optional*, defaults to 256):
Projection weights dimension in multi-head attention.
linear_conv_kernel_dim (`int`, *optional*, defaults to 4):
Kernel size of the convolution used in linear attention layers.
linear_key_head_dim (`int`, *optional*, defaults to 128):
Dimension of each key head in linear attention.
linear_value_head_dim (`int`, *optional*, defaults to 128):
Dimension of each value head in linear attention.
linear_num_key_heads (`int`, *optional*, defaults to 16):
Number of key heads used in linear attention layers.
linear_num_value_heads (`int`, *optional*, defaults to 32):
Number of value heads used in linear attention layers.
decoder_sparse_step (`int`, *optional*, defaults to 1):
The frequency of the MoE layer.
moe_intermediate_size (`int`, *optional*, defaults to 512):
Intermediate size of the routed expert.
shared_expert_intermediate_size (`int`, *optional*, defaults to 512):
Intermediate size of the shared expert.
num_experts_per_tok (`int`, *optional*, defaults to 10):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 512):
Number of routed experts.
norm_topk_prob (`bool`, *optional*, defaults to `True`):
Whether to normalize the topk probabilities.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
mlp_only_layers (`list[int]`, *optional*, defaults to `[]`):
Indicate which layers use Qwen3NextMLP rather than Qwen3NextSparseMoeBlock
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
layer_types (`list[str]`, *optional*):
Types of each layer (attention or linear).
```python
>>> from transformers import Qwen3NextModel, Qwen3NextConfig
>>> # Initializing a Qwen3Next style configuration
>>> configuration = Qwen3NextConfig()
>>> # Initializing a model from the Qwen3-Next-80B-A3B style configuration
>>> model = Qwen3NextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "qwen3_next"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.experts.*.gate_proj": "colwise",
"layers.*.mlp.experts.*.up_proj": "colwise",
"layers.*.mlp.experts.*.down_proj": "rowwise",
"layers.*.mlp.shared_experts.gate_proj": "colwise",
"layers.*.mlp.shared_experts.up_proj": "colwise",
"layers.*.mlp.shared_experts.down_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=48,
num_attention_heads=16,
num_key_value_heads=2,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.25,
attention_bias=False,
attention_dropout=0.0,
head_dim=256,
linear_conv_kernel_dim=4,
linear_key_head_dim=128,
linear_value_head_dim=128,
linear_num_key_heads=16,
linear_num_value_heads=32,
decoder_sparse_step=1,
moe_intermediate_size=512,
shared_expert_intermediate_size=512,
num_experts_per_tok=10,
num_experts=512,
norm_topk_prob=True,
output_router_logits=False,
router_aux_loss_coef=0.001,
mlp_only_layers=[],
layer_types=None,
**kwargs,
):
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.head_dim = head_dim
rope_config_validation(self)
self.layer_types = layer_types
if self.layer_types is None:
interval_pattern = kwargs.get("full_attention_interval", 4)
self.layer_types = [
"linear_attention" if bool(
(i + 1) % interval_pattern) else "full_attention"
for i in range(self.num_hidden_layers)
]
# layer_type_validation(self.layer_types, self.num_hidden_layers)
# linear attention part
self.linear_conv_kernel_dim = linear_conv_kernel_dim
self.linear_key_head_dim = linear_key_head_dim
self.linear_value_head_dim = linear_value_head_dim
self.linear_num_key_heads = linear_num_key_heads
self.linear_num_value_heads = linear_num_value_heads
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.mlp_only_layers = mlp_only_layers
class Qwen3NextGate(nn.Module):
def __init__(