mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
[TRTLLM-8577][feat] Clean the Qwen3-next code by removing Qwen3NextCo… (#10228)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
This commit is contained in:
parent
93ac0bc1dc
commit
1865020b6f
@ -23,8 +23,7 @@ import torch.nn.functional as F
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from torch import nn
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.modeling_rope_utils import rope_config_validation
|
||||
from transformers import Qwen3NextConfig
|
||||
|
||||
from tensorrt_llm._torch.models.checkpoints.base_weight_mapper import \
|
||||
BaseWeightMapper
|
||||
@ -71,254 +70,6 @@ def divide(numerator, denominator):
|
||||
return numerator // denominator
|
||||
|
||||
|
||||
class Qwen3NextConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`Qwen3NextModel`]. It is used to instantiate a
|
||||
Qwen3-Next model according to the specified arguments, defining the model architecture.
|
||||
Instantiating a configuration with the defaults will yield a similar configuration to that of
|
||||
Qwen3-Next-80B-A3B-Instruct [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct).
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 151936):
|
||||
Vocabulary size of the model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids`.
|
||||
hidden_size (`int`, *optional*, defaults to 2048):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 5632):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 48):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*, defaults to 2):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
||||
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether the model's input and output word embeddings should be tied.
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
||||
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
||||
accordingly.
|
||||
Expected contents:
|
||||
`rope_type` (`str`):
|
||||
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
||||
'llama3'], with 'default' being the original RoPE implementation.
|
||||
`factor` (`float`, *optional*):
|
||||
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
||||
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
||||
original maximum pre-trained length.
|
||||
`original_max_position_embeddings` (`int`, *optional*):
|
||||
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
||||
pretraining.
|
||||
`attention_factor` (`float`, *optional*):
|
||||
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
||||
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
||||
`factor` field to infer the suggested value.
|
||||
`beta_fast` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 32.
|
||||
`beta_slow` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 1.
|
||||
`short_factor` (`List[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`long_factor` (`List[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`low_freq_factor` (`float`, *optional*):
|
||||
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
||||
`high_freq_factor` (`float`, *optional*):
|
||||
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
||||
partial_rotary_factor (`float`, *optional*, defaults to 0.25):
|
||||
Percentage of the query and keys which will have rotary embedding.
|
||||
attention_bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
head_dim (`int`, *optional*, defaults to 256):
|
||||
Projection weights dimension in multi-head attention.
|
||||
linear_conv_kernel_dim (`int`, *optional*, defaults to 4):
|
||||
Kernel size of the convolution used in linear attention layers.
|
||||
linear_key_head_dim (`int`, *optional*, defaults to 128):
|
||||
Dimension of each key head in linear attention.
|
||||
linear_value_head_dim (`int`, *optional*, defaults to 128):
|
||||
Dimension of each value head in linear attention.
|
||||
linear_num_key_heads (`int`, *optional*, defaults to 16):
|
||||
Number of key heads used in linear attention layers.
|
||||
linear_num_value_heads (`int`, *optional*, defaults to 32):
|
||||
Number of value heads used in linear attention layers.
|
||||
decoder_sparse_step (`int`, *optional*, defaults to 1):
|
||||
The frequency of the MoE layer.
|
||||
moe_intermediate_size (`int`, *optional*, defaults to 512):
|
||||
Intermediate size of the routed expert.
|
||||
shared_expert_intermediate_size (`int`, *optional*, defaults to 512):
|
||||
Intermediate size of the shared expert.
|
||||
num_experts_per_tok (`int`, *optional*, defaults to 10):
|
||||
Number of selected experts.
|
||||
num_experts (`int`, *optional*, defaults to 512):
|
||||
Number of routed experts.
|
||||
norm_topk_prob (`bool`, *optional*, defaults to `True`):
|
||||
Whether to normalize the topk probabilities.
|
||||
output_router_logits (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the router logits should be returned by the model. Enabling this will also
|
||||
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
|
||||
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
||||
The aux loss factor for the total loss.
|
||||
mlp_only_layers (`list[int]`, *optional*, defaults to `[]`):
|
||||
Indicate which layers use Qwen3NextMLP rather than Qwen3NextSparseMoeBlock
|
||||
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
|
||||
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
|
||||
layer_types (`list[str]`, *optional*):
|
||||
Types of each layer (attention or linear).
|
||||
|
||||
```python
|
||||
>>> from transformers import Qwen3NextModel, Qwen3NextConfig
|
||||
|
||||
>>> # Initializing a Qwen3Next style configuration
|
||||
>>> configuration = Qwen3NextConfig()
|
||||
|
||||
>>> # Initializing a model from the Qwen3-Next-80B-A3B style configuration
|
||||
>>> model = Qwen3NextModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```
|
||||
"""
|
||||
|
||||
model_type = "qwen3_next"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
base_model_tp_plan = {
|
||||
"layers.*.self_attn.q_proj": "colwise",
|
||||
"layers.*.self_attn.k_proj": "colwise",
|
||||
"layers.*.self_attn.v_proj": "colwise",
|
||||
"layers.*.self_attn.o_proj": "rowwise",
|
||||
"layers.*.mlp.experts.*.gate_proj": "colwise",
|
||||
"layers.*.mlp.experts.*.up_proj": "colwise",
|
||||
"layers.*.mlp.experts.*.down_proj": "rowwise",
|
||||
"layers.*.mlp.shared_experts.gate_proj": "colwise",
|
||||
"layers.*.mlp.shared_experts.up_proj": "colwise",
|
||||
"layers.*.mlp.shared_experts.down_proj": "rowwise",
|
||||
"layers.*.mlp.gate_proj": "colwise",
|
||||
"layers.*.mlp.up_proj": "colwise",
|
||||
"layers.*.mlp.down_proj": "rowwise",
|
||||
}
|
||||
base_model_pp_plan = {
|
||||
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
||||
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
||||
"norm": (["hidden_states"], ["hidden_states"]),
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=151936,
|
||||
hidden_size=2048,
|
||||
intermediate_size=5632,
|
||||
num_hidden_layers=48,
|
||||
num_attention_heads=16,
|
||||
num_key_value_heads=2,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=32768,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
partial_rotary_factor=0.25,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
head_dim=256,
|
||||
linear_conv_kernel_dim=4,
|
||||
linear_key_head_dim=128,
|
||||
linear_value_head_dim=128,
|
||||
linear_num_key_heads=16,
|
||||
linear_num_value_heads=32,
|
||||
decoder_sparse_step=1,
|
||||
moe_intermediate_size=512,
|
||||
shared_expert_intermediate_size=512,
|
||||
num_experts_per_tok=10,
|
||||
num_experts=512,
|
||||
norm_topk_prob=True,
|
||||
output_router_logits=False,
|
||||
router_aux_loss_coef=0.001,
|
||||
mlp_only_layers=[],
|
||||
layer_types=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.partial_rotary_factor = partial_rotary_factor
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
self.head_dim = head_dim
|
||||
rope_config_validation(self)
|
||||
|
||||
self.layer_types = layer_types
|
||||
if self.layer_types is None:
|
||||
interval_pattern = kwargs.get("full_attention_interval", 4)
|
||||
self.layer_types = [
|
||||
"linear_attention" if bool(
|
||||
(i + 1) % interval_pattern) else "full_attention"
|
||||
for i in range(self.num_hidden_layers)
|
||||
]
|
||||
# layer_type_validation(self.layer_types, self.num_hidden_layers)
|
||||
|
||||
# linear attention part
|
||||
self.linear_conv_kernel_dim = linear_conv_kernel_dim
|
||||
self.linear_key_head_dim = linear_key_head_dim
|
||||
self.linear_value_head_dim = linear_value_head_dim
|
||||
self.linear_num_key_heads = linear_num_key_heads
|
||||
self.linear_num_value_heads = linear_num_value_heads
|
||||
|
||||
# MoE arguments
|
||||
self.decoder_sparse_step = decoder_sparse_step
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.shared_expert_intermediate_size = shared_expert_intermediate_size
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.num_experts = num_experts
|
||||
self.norm_topk_prob = norm_topk_prob
|
||||
self.output_router_logits = output_router_logits
|
||||
self.router_aux_loss_coef = router_aux_loss_coef
|
||||
self.mlp_only_layers = mlp_only_layers
|
||||
|
||||
|
||||
class Qwen3NextGate(nn.Module):
|
||||
|
||||
def __init__(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user