[None][chore] added AutoDeploy nano_v3_scale.yaml (#10845)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
This commit is contained in:
Eran Geva 2026-02-12 08:37:42 +02:00 committed by GitHub
parent 219195688c
commit 31314b9fed
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,51 @@
runtime: trtllm
compile_backend: torch-cudagraph
max_batch_size: 384
max_seq_len: 65536 # tunable
enable_chunked_prefill: true
attn_backend: flashinfer
model_factory: AutoModelForCausalLM
skip_loading_weights: false
sampler_type: "TRTLLMSampler"
cuda_graph_batch_sizes: [1, 2, 4, 8, 16, 24, 32, 64, 128, 256, 320, 384]
kv_cache_config:
free_gpu_memory_fraction: 0.88
# tunable mamba cache dtype
# --> use float32 for accuracy and default (auto) for speed
mamba_ssm_cache_dtype: auto
transforms:
detect_sharding:
allreduce_strategy: SYMM_MEM
sharding_dims: ['tp','ep', 'bmm']
process_grid: {'tp': 8, 'ep': 1}
manual_config:
head_dim: 128
tp_plan:
# mamba SSM layer
"in_proj": "mamba"
"out_proj": "rowwise"
# attention layer
"q_proj": "colwise"
"k_proj": "colwise"
"v_proj": "colwise"
"o_proj": "rowwise"
# NOTE: consider not sharding shared experts and/or
# latent projections at all, keeping them replicated.
# To do so, comment out the corresponding entries.
# moe layer: SHARED experts
# "up_proj": "colwise"
# "down_proj": "rowwise"
# MoLE: latent projections: simple shard
# "fc1_latent_proj": "gather"
# "fc2_latent_proj": "gather"
multi_stream_moe:
stage: compile
enabled: false
gather_logits_before_lm_head:
# TODO: fix https://github.com/NVIDIA/TensorRT-LLM/issues/9878 to enable by default
enabled: true
fuse_mamba_a_log:
stage: post_load_fusion
enabled: true
insert_cached_ssm_attention:
backend: flashinfer_ssm