Use launchWithPdlWhenEnabled

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
This commit is contained in:
Kaiyu Xie 2026-01-13 03:56:55 -08:00
parent 9520144116
commit 36edeadfc1

View File

@ -29,6 +29,8 @@ TRTLLM_NAMESPACE_BEGIN
namespace kernels::moe_comm
{
using tensorrt_llm::common::launchWithPdlWhenEnabled;
#define ENABLE_DEBUG_PRINT 0
#define DISABLE_SYNC_FOR_PROFILING 0
@ -335,7 +337,6 @@ __global__ void moeA2APrepareDispatchKernel(
int* send_counters, int* local_token_counter, int ep_size, uint32_t* flag_val_ptr)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Wait for any dependent kernels to complete before starting
cudaGridDependencySynchronize();
#endif
@ -354,7 +355,6 @@ __global__ void moeA2APrepareDispatchKernel(
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Signal that this kernel's main work is complete and dependent kernels can launch
cudaTriggerProgrammaticLaunchCompletion();
#endif
}
@ -375,7 +375,6 @@ __global__ void moeA2ADispatchKernel(int32_t const* token_selected_experts, // [
int local_num_tokens, int rank_id, int ep_size, int num_experts_per_rank)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Wait for any dependent kernels to complete before starting
cudaGridDependencySynchronize();
#endif
@ -545,28 +544,14 @@ __global__ void moeA2ADispatchKernel(int32_t const* token_selected_experts, // [
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Signal that this kernel's main work is complete and dependent kernels can launch
cudaTriggerProgrammaticLaunchCompletion();
#endif
}
void moe_a2a_prepare_dispatch_launch(MoeA2ADispatchParams const& params)
{
// Setup PDL launch configuration
cudaLaunchConfig_t config;
config.gridDim = 1;
config.blockDim = params.ep_size;
config.dynamicSmemBytes = 0;
config.stream = params.stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.attrs = attrs;
config.numAttrs = 1;
TLLM_CUDA_CHECK(cudaLaunchKernelEx(&config, moeA2APrepareDispatchKernel, params.send_counters,
params.local_token_counter, params.ep_size, params.flag_val));
launchWithPdlWhenEnabled("moeA2APrepareDispatchKernel", moeA2APrepareDispatchKernel, 1, params.ep_size, 0,
params.stream, params.send_counters, params.local_token_counter, params.flag_val);
}
// ============================================================================
@ -619,17 +604,6 @@ void moe_a2a_dispatch_launch(MoeA2ADispatchParams const& params)
constexpr int kWarpSize = 32;
int const kWarpsPerBlock = kBlockSize / kWarpSize;
// Setup PDL launch configuration
cudaLaunchConfig_t config;
config.blockDim = kBlockSize;
config.stream = params.stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.attrs = attrs;
config.numAttrs = 1;
// Configure kernel launch
if (params.one_block_per_token)
{
@ -640,14 +614,13 @@ void moe_a2a_dispatch_launch(MoeA2ADispatchParams const& params)
grid_size = 1;
}
int shared_bytes = 2 * params.top_k * (int) sizeof(int);
config.gridDim = grid_size;
config.dynamicSmemBytes = shared_bytes;
SWITCH_TOP_K(params.top_k, TOP_K, {
auto kernel_fn = moeA2ADispatchKernel<BlockPolicy, TOP_K>;
TLLM_CUDA_CHECK(cudaLaunchKernelEx(&config, kernel_fn, params.token_selected_experts, kernel_ptrs,
params.num_payloads, params.max_tokens_per_rank, params.local_num_tokens, params.ep_rank,
params.ep_size, params.num_experts_per_rank));
launchWithPdlWhenEnabled("moeA2ADispatchKernel", kernel_fn, grid_size, kBlockSize, shared_bytes,
params.stream, params.token_selected_experts, kernel_ptrs, params.num_payloads,
params.max_tokens_per_rank, params.local_num_tokens, params.ep_rank, params.ep_size,
params.num_experts_per_rank);
})
}
else
@ -659,14 +632,13 @@ void moe_a2a_dispatch_launch(MoeA2ADispatchParams const& params)
grid_size = 1;
}
int shared_bytes = 2 * kWarpsPerBlock * params.top_k * (int) sizeof(int);
config.gridDim = grid_size;
config.dynamicSmemBytes = shared_bytes;
SWITCH_TOP_K(params.top_k, TOP_K, {
auto kernel_fn = moeA2ADispatchKernel<WarpPolicy, TOP_K>;
TLLM_CUDA_CHECK(cudaLaunchKernelEx(&config, kernel_fn, params.token_selected_experts, kernel_ptrs,
params.num_payloads, params.max_tokens_per_rank, params.local_num_tokens, params.ep_rank,
params.ep_size, params.num_experts_per_rank));
launchWithPdlWhenEnabled("moeA2ADispatchKernel", kernel_fn, grid_size, kBlockSize, shared_bytes,
params.stream, params.token_selected_experts, kernel_ptrs, params.num_payloads,
params.max_tokens_per_rank, params.local_num_tokens, params.ep_rank, params.ep_size,
params.num_experts_per_rank);
})
}
}
@ -1001,7 +973,6 @@ __global__ void moeA2APrepareCombineKernel(uint8_t* recv_buffer_bytes, uint8_t c
int bytes_per_token, int ep_size, int max_tokens_per_rank, uint32_t* flag_val_ptr, int const* recv_counters)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Wait for any dependent kernels to complete before starting
cudaGridDependencySynchronize();
#endif
@ -1014,7 +985,6 @@ __global__ void moeA2APrepareCombineKernel(uint8_t* recv_buffer_bytes, uint8_t c
if (payload_bytes == nullptr)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Signal completion even if no payload
cudaTriggerProgrammaticLaunchCompletion();
#endif
return;
@ -1026,7 +996,6 @@ __global__ void moeA2APrepareCombineKernel(uint8_t* recv_buffer_bytes, uint8_t c
if (slot_idx >= total_slots)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Signal completion before early return
cudaTriggerProgrammaticLaunchCompletion();
#endif
return;
@ -1040,7 +1009,6 @@ __global__ void moeA2APrepareCombineKernel(uint8_t* recv_buffer_bytes, uint8_t c
if (token_idx >= recv_counters[source_rank])
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Signal completion before early return
cudaTriggerProgrammaticLaunchCompletion();
#endif
return;
@ -1055,7 +1023,6 @@ __global__ void moeA2APrepareCombineKernel(uint8_t* recv_buffer_bytes, uint8_t c
vectorized_copy<ThreadingPolicy>(dst_ptr, src_ptr, bytes_per_token);
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Signal that this kernel's main work is complete and dependent kernels can launch
cudaTriggerProgrammaticLaunchCompletion();
#endif
}
@ -1070,7 +1037,6 @@ __global__ void moeA2ACombineKernel(
int max_tokens_per_rank, int elements_per_token, int local_num_tokens, int rank_id, int ep_size)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Wait for any dependent kernels to complete before starting
cudaGridDependencySynchronize();
#endif
@ -1151,7 +1117,6 @@ __global__ void moeA2ACombineKernel(
vectorized_combine<TOP_K, ThreadingPolicy, T>(token_output, size_per_token, rank_id, max_tokens_per_rank, ptrs);
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
// PDL: Signal that this kernel's main work is complete and dependent kernels can launch
cudaTriggerProgrammaticLaunchCompletion();
#endif
}
@ -1175,39 +1140,16 @@ void moe_a2a_prepare_combine_launch(MoeA2ACombineParams const& params)
int total_slots = params.prepare_payload == nullptr ? 1 : params.ep_size * params.max_tokens_per_rank;
int grid_size_warp = ceilDiv(total_slots, kWarpsPerBlock);
int grid_size_block = total_slots; // one block per token
int grid = params.one_block_per_token ? grid_size_block : grid_size_warp;
// Setup PDL launch configuration
cudaLaunchConfig_t config;
config.gridDim = grid;
config.blockDim = kBlockSize;
config.dynamicSmemBytes = 0;
config.stream = params.stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.attrs = attrs;
config.numAttrs = 1;
uint8_t* recv_buffer_bytes = static_cast<uint8_t*>(const_cast<void*>(params.recv_buffers[params.ep_rank]));
uint8_t const* payload_bytes = static_cast<uint8_t const*>(params.prepare_payload);
if (params.one_block_per_token)
{
auto kernel_fn = moeA2APrepareCombineKernel<BlockPolicy>;
TLLM_CUDA_CHECK(cudaLaunchKernelEx(
&config, kernel_fn, recv_buffer_bytes, payload_bytes, bytes_per_token, params.ep_size,
params.max_tokens_per_rank, params.flag_val, params.recv_counters));
}
else
{
auto kernel_fn = moeA2APrepareCombineKernel<WarpPolicy>;
TLLM_CUDA_CHECK(cudaLaunchKernelEx(
&config, kernel_fn, recv_buffer_bytes, payload_bytes, bytes_per_token, params.ep_size,
params.max_tokens_per_rank, params.flag_val, params.recv_counters));
}
auto kernel_fn
= params.one_block_per_token ? moeA2APrepareCombineKernel<BlockPolicy> : moeA2APrepareCombineKernel<WarpPolicy>;
launchWithPdlWhenEnabled("moeA2APrepareCombineKernel", kernel_fn, grid, kBlockSize, 0, params.stream,
recv_buffer_bytes, payload_bytes, bytes_per_token, params.ep_size, params.max_tokens_per_rank, params.flag_val,
params.recv_counters);
}
// ============================================================================
@ -1262,26 +1204,14 @@ void moe_a2a_combine_launch(MoeA2ACombineParams const& params)
int grid = params.one_block_per_token ? grid_size_block : grid_size_warp;
// Setup PDL launch configuration
cudaLaunchConfig_t config;
config.gridDim = grid;
config.blockDim = kBlockSize;
config.dynamicSmemBytes = 0;
config.stream = params.stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.attrs = attrs;
config.numAttrs = 1;
// Launch appropriate kernel with compact macros
SWITCH_DTYPE(params.dtype, TKernelType, {
SWITCH_POLICY(params.one_block_per_token, Policy, {
SWITCH_TOP_K(params.top_k, TOP_K, {
auto kernel_fn = moeA2ACombineKernel<TKernelType, Policy, TOP_K>;
TLLM_CUDA_CHECK(cudaLaunchKernelEx(&config, kernel_fn, kernel_ptrs, params.max_tokens_per_rank,
params.elements_per_token, params.local_num_tokens, params.ep_rank, params.ep_size));
launchWithPdlWhenEnabled("moeA2ACombineKernel", kernel_fn, grid, kBlockSize, 0, params.stream,
kernel_ptrs, params.max_tokens_per_rank, params.elements_per_token, params.local_num_tokens,
params.ep_rank, params.ep_size);
});
});
});