mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
[None] [feat] nsys profile output kernel classifier (#7020)
Signed-off-by: Grace Ho <grho@nvidia.com>
This commit is contained in:
parent
81fd468fec
commit
3d54a1a521
174
tensorrt_llm/tools/profiler/nsys_profile_tools/README.md
Normal file
174
tensorrt_llm/tools/profiler/nsys_profile_tools/README.md
Normal file
@ -0,0 +1,174 @@
|
||||
# gputrc2graph.py
|
||||
|
||||
This script processes NVIDIA Nsight Systems (`nsys`) GPU trace files
|
||||
(`.nsys-rep`) with -t cuda tracing enabled, and generates kernel-level
|
||||
summaries and visualizations of GPU and non-GPU time. It is useful for
|
||||
profiling and analyzing nsys profile output.
|
||||
|
||||
## Usage
|
||||
|
||||
### Command-line Arguments
|
||||
|
||||
- `--in_file`
|
||||
**(required)**
|
||||
List of input files and their metadata. Each entry should be in the format:
|
||||
`<nsys-rep>,<engine>,<model>,<elapsed_nonprofiled_sec>`
|
||||
- `nsys-rep`: Path to the `.nsys-rep` file.
|
||||
- `engine`: Engine name (e.g., `trtllm`).
|
||||
- `model`: Model name (e.g., `llama`, `gpt-oss`, `ds`).
|
||||
- `elapsed_nonprofiled_sec`: Wall-clock runtime (in seconds) without
|
||||
profiling. Specify `0` to use the elapsed GPU time calculated from the nsys-rep file (this may inflate non-GPU time if actual runtime without profiling is less). Multiple entries can be provided, separated by spaces.
|
||||
|
||||
- `--out_dir`
|
||||
Output directory for the generated CSV and HTML files.
|
||||
If not specified, results are saved in the current directory.
|
||||
|
||||
- `--title`
|
||||
Title for the HTML chart/visualization.
|
||||
|
||||
- `--nsys_cmd`
|
||||
Path to the `nsys` command.
|
||||
Default: `nsys` (assumes it is in your PATH).
|
||||
Use this if `nsys` is not in your system PATH.
|
||||
|
||||
## Notes
|
||||
|
||||
- Make sure you have pandas and plotly python packages installed.
|
||||
- Make sure [nsys](https://developer.nvidia.com/nsight-systems/get-started) is
|
||||
installed, and specify the path to the `nsys` command with `--nsys_cmd` if it
|
||||
is not in your PATH.
|
||||
- For more details on available engines and models, see the help string in
|
||||
the script or run:
|
||||
|
||||
```bash
|
||||
python3 gputrc2graph.py --help
|
||||
```
|
||||
|
||||
## Example 1: analyze a single profile
|
||||
|
||||
To analyze the GPU cycles of for example, a llama-3.1-8B model with trtllm:
|
||||
|
||||
1. Run the following command to collect nsys profile, for trtllm serve config.
|
||||
|
||||
```bash
|
||||
nsys profile -t cuda -o nsys_res -f true --trace-fork-before-exec=true \
|
||||
--cuda-graph-trace=node --delay <DELAY> --duration <DURATION> \
|
||||
python3 -m trtllm-serve meta-llama/Llama-4-Scout-17B-16E-Instruct ...
|
||||
```
|
||||
|
||||
where:
|
||||
|
||||
- DELAY: how many seconds to delay nsys from collecting profiles, needed so
|
||||
that profiles aren't captured till trtllm server has come up and load
|
||||
generation starts.
|
||||
- DURATION: how many seconds for nsys profile to run before generating the
|
||||
profile. This should be > the duration of the run.
|
||||
|
||||
2. Run again, this time without collecting the profile, and get the total run
|
||||
time in seconds. This value will be used by the script to calculate the
|
||||
CPU(non-GPU) seconds for the analysis.
|
||||
|
||||
3. Say the run elapsed time is .35 seconds, from step #2. Run script to
|
||||
analyze:
|
||||
|
||||
```bash
|
||||
python3 gputrc2graph.py \
|
||||
--in_file run1.nsys-rep,trtllm,llama,.35
|
||||
```
|
||||
|
||||
The command will produce 2 files for analysis:
|
||||
|
||||
- result.html: this categorizes kernel names into different categories in a
|
||||
stacked bar chart.
|
||||
- result.csv: shows how the kernel names are mapped to the different
|
||||
categories.
|
||||
|
||||
### HTML visualization with result.html
|
||||
|
||||
The html file shows the number of elapsed seconds due to different GPU
|
||||
Substages or categories, which consist of moe_gemm as the biggest
|
||||
category, at .14 seconds, followed by "attn" kernels. This lets the user
|
||||
prioritize the kernels to focus on for performance optimizations.
|
||||
|
||||

|
||||
|
||||
There's also an appended data table underneath the bar chart for copying out to
|
||||
other post-processing tools.
|
||||
|
||||

|
||||
|
||||
### Kernel to category mapping with result.csv
|
||||
|
||||
Suppose the user would like to focus on improving decreasing calls to nccl
|
||||
kernels. The next step is to use the result.csv to dive into what the kernels
|
||||
are which compose the nccl GPU cycles. The following image shows that
|
||||
ar_fusion all reduce kernel to be the biggest contributor to GPU cycles for
|
||||
nccl, followed by AllGather.
|
||||
|
||||

|
||||
|
||||
## Example 2: analyze multiple profiles
|
||||
|
||||
Suppose the user has multiple nsys trace files, captured for different models,
|
||||
say llama and gpt-oss in this case, and wish to compare their GPU/non-GPU
|
||||
time, something like the following command can be used.
|
||||
|
||||
```bash
|
||||
python3 gputrc2graph.py \
|
||||
--in_file run1.nsys-rep,trtllm,llama,100 run2.nsys-rep,trtllm,gpt-oss,102 \
|
||||
--out_dir results
|
||||
```
|
||||
|
||||
The analysis process is similar to example 1 but now there will be multiple
|
||||
stack bar charts that can be compared. The categories for the different
|
||||
kernels will remain the same, so that it's easy to compare the GPU cycles for
|
||||
the same categories.
|
||||
|
||||
Once a category is shown to have more cycles for one configuration than
|
||||
another, the next step would be to use the csv file to see what kernels are
|
||||
mapped into that category, and which kernels are taking the largest amount of
|
||||
time which would cause a difference for the overall category.
|
||||
|
||||
## Example 3: add new classification for a new model
|
||||
|
||||
To create a new engine DEF with model ABC, just add another json file in the
|
||||
same directory as gputrc2graph.py with the same format as the other json files.
|
||||
The script will automatically pick up all the json files in the same directory
|
||||
as engine/model specifications.
|
||||
|
||||
Then, for this new model, suppose there are 4 kernels to be classified into
|
||||
"gemm" and "attn", where the gemm kernelshave names with "*H*" or "*I*" in
|
||||
them, and attn kernels have names with "*J*" or "*K*" in them, just add another
|
||||
.json file in the same directory as gputrc2graph.py with the same format as
|
||||
the other json files, like the following:
|
||||
|
||||
```json
|
||||
{
|
||||
"DEF": {
|
||||
"ABC": {
|
||||
"H|I": "gemm",
|
||||
"J|K": "attn",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Each entry in the dictionary consists of:
|
||||
|
||||
- key: a regex used to classify the kernels
|
||||
- value: the category to classify the kernels into.
|
||||
|
||||
The last 2 entries are common for all engine/models, consisting of CUDA memory
|
||||
operations and a 'misc' for anything that's leftover and can't be classified.
|
||||
|
||||
When invoking gputrc2graph.py, specify a trace file with this new model/engine
|
||||
like the following:
|
||||
|
||||
```bash
|
||||
--in_file new.nsys-rep,DEF,ABC,<runtime>
|
||||
```
|
||||
|
||||
If the engine_DEF.json file already exists, just add the model as a new node in
|
||||
the existing engine file, after the other models.
|
||||
349
tensorrt_llm/tools/profiler/nsys_profile_tools/gputrc2graph.py
Executable file
349
tensorrt_llm/tools/profiler/nsys_profile_tools/gputrc2graph.py
Executable file
@ -0,0 +1,349 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This generates gpu kernel analysis output from nsys rep. Will call nsys
|
||||
stats -r cuda_gpu_trace, get non-overlapped gpu cycles, then generate
|
||||
csv and html output for analysis
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
|
||||
import regex as re
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# helper data class for annotating kernels
|
||||
def load_engine_model():
|
||||
"""returns engine_model built from all json files in the current dir"""
|
||||
import glob
|
||||
import json
|
||||
|
||||
engine_model = {}
|
||||
|
||||
json_files = glob.glob(
|
||||
os.path.join(os.path.dirname(__file__) or ".", "*.json"))
|
||||
for fname in json_files:
|
||||
with open(fname, encoding="utf-8") as f:
|
||||
engine_model.update(json.load(f))
|
||||
return engine_model
|
||||
|
||||
|
||||
class GPUTrace2Graph:
|
||||
"""
|
||||
Parses output of nsys report, generates csv and bar chart output
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
import pandas as pd # avoid importing till needed
|
||||
|
||||
self.pd = pd
|
||||
self.pd.options.mode.copy_on_write = True
|
||||
|
||||
# helper functions for generating trace->summary csvs
|
||||
def gen_nonoverlapped_sum_from_gputrace(self, in_file, out_file):
|
||||
logger.info("loading %s", in_file)
|
||||
df = self.pd.read_csv(in_file,
|
||||
usecols=["Start (ns)", "Duration (ns)", "Name"])
|
||||
if df.empty:
|
||||
return
|
||||
df["End (ns)"] = df["Start (ns)"] + df["Duration (ns)"]
|
||||
df = self.sum_non_overlapping_intervals(df)
|
||||
# get ready to print table with elapsed times per kernel
|
||||
df["Instances"] = 1
|
||||
df_sum = df.groupby("Name", as_index=False).agg({
|
||||
"Elapsed Time (ns)": "sum",
|
||||
"Duration (ns)": "sum",
|
||||
"Instances": "size"
|
||||
})
|
||||
|
||||
# generate csv
|
||||
df_sum["Total Time (sec)"] = df_sum["Duration (ns)"] / 1e9
|
||||
df_sum["Elapsed Time (sec)"] = df_sum["Elapsed Time (ns)"] / 1e9
|
||||
df_sum = df_sum.sort_values(by="Elapsed Time (sec)", ascending=False)
|
||||
df_sum[["Elapsed Time (sec)", "Total Time (sec)", "Instances",
|
||||
"Name"]].to_csv(out_file, index=False)
|
||||
|
||||
def sum_non_overlapping_intervals(self, df):
|
||||
"""
|
||||
returns new sorted df with Elapsed Time (ns) column using
|
||||
vectorized operations
|
||||
"""
|
||||
logger.info("sorting %s trace records by start time", str(df.shape))
|
||||
assert not df.empty, 'empty nsys records'
|
||||
# Sort by start time and reset index
|
||||
df = df.sort_values(by="Start (ns)").reset_index(drop=True)
|
||||
|
||||
# Initialize elapsed time as duration
|
||||
df["Elapsed Time (ns)"] = df["Duration (ns)"]
|
||||
|
||||
# Get numpy arrays for faster operations
|
||||
starts = df["Start (ns)"].values
|
||||
ends = df["End (ns)"].values
|
||||
|
||||
# Keep track of current interval end
|
||||
current_end = ends[0]
|
||||
display_units = max(1, int(len(df) / 100))
|
||||
# Update current_end for overlapping intervals
|
||||
for i in range(1, len(df)):
|
||||
if i % display_units == 0:
|
||||
print(f"processing trace: {int(i/len(df) * 100)} %", end="\r")
|
||||
if starts[i] <= current_end:
|
||||
if ends[i] > current_end:
|
||||
# Partial overlap
|
||||
df.iloc[i, df.columns.get_loc("Elapsed Time (ns)")] = (
|
||||
ends[i] - current_end)
|
||||
current_end = ends[i]
|
||||
else:
|
||||
# Complete overlap
|
||||
df.iloc[i, df.columns.get_loc("Elapsed Time (ns)")] = 0
|
||||
else:
|
||||
# No overlap
|
||||
current_end = ends[i]
|
||||
|
||||
return df
|
||||
|
||||
# functions for generating html files
|
||||
def make_html(self, df, output_dir, title):
|
||||
"""make html graph from df"""
|
||||
import plotly.express as px
|
||||
|
||||
if df.empty:
|
||||
return
|
||||
output_name = os.path.join(output_dir, "result")
|
||||
if not title:
|
||||
title = "Model_Engine"
|
||||
x = "Model_Engine"
|
||||
y = "Elapsed Time (sec)"
|
||||
color = "Category"
|
||||
""" generate kernel mapping table """
|
||||
# Sort Model_Engine categories by last field after underscore
|
||||
df["Model_Engine"] = self.pd.Categorical(
|
||||
df["Model_Engine"],
|
||||
sorted(df["Model_Engine"].unique(), key=lambda x: x.split("_")[-1]),
|
||||
)
|
||||
df[["Model_Engine", color, "Instances", "Name",
|
||||
y]].sort_values(by=color).to_csv(f"{output_name}.csv", index=False)
|
||||
graph = px.histogram(
|
||||
df.round(2),
|
||||
x=x,
|
||||
y=y,
|
||||
title=(f"{y} for {title}"),
|
||||
color=color,
|
||||
text_auto=True,
|
||||
)
|
||||
# wrap x axis labels
|
||||
graph.update_xaxes(automargin=True)
|
||||
graph.write_html(f"{output_name}.html")
|
||||
"""
|
||||
Generate data table with columns per Model_Engine into result.html
|
||||
"""
|
||||
pivot_df = df.pivot_table(
|
||||
values="Elapsed Time (sec)",
|
||||
index="Category",
|
||||
columns="Model_Engine",
|
||||
aggfunc="sum",
|
||||
observed=False,
|
||||
).round(2)
|
||||
# Add sum row at bottom
|
||||
pivot_df.loc["total_elapsed_sec"] = pivot_df.sum()
|
||||
pivot_df.fillna("").to_html("temp.html")
|
||||
with (
|
||||
open(f"{output_name}.html", "a", encoding="utf-8") as outfile,
|
||||
open("temp.html", encoding="utf-8") as infile,
|
||||
):
|
||||
outfile.write(infile.read())
|
||||
os.remove("temp.html")
|
||||
|
||||
print(f"Finished generating: \n"
|
||||
f" {output_name}.html for stack bar chart \n"
|
||||
f" {output_name}.csv for Kernel-Category mapping")
|
||||
|
||||
def anno_gpu_kernname(self, df, mapping):
|
||||
"""add "Category" column"""
|
||||
|
||||
def anno_gpu_kernname_helper(name):
|
||||
for kern_name, val in mapping.items():
|
||||
if re.search(kern_name, name):
|
||||
return val
|
||||
|
||||
df["Category"] = df["Name"].apply(anno_gpu_kernname_helper)
|
||||
|
||||
def make_nongpu_row(self, df, nongpu_sec):
|
||||
"""this will append non-gpu time entry at end of df"""
|
||||
nongpu_row = self.pd.DataFrame([df.iloc[-1]])
|
||||
nongpu_row["Category"] = nongpu_row["Name"] = "CPU(non-GPU)"
|
||||
nongpu_row["Instances"] = 1
|
||||
nongpu_row["Elapsed Time (sec)"] = nongpu_sec
|
||||
return nongpu_row
|
||||
|
||||
def is_valid_file(self, base_file):
|
||||
"""asserts if base_file is non-existent or is empty"""
|
||||
assert (os.path.isfile(base_file) and os.path.getsize(base_file)
|
||||
> 0), f"{base_file} doesn't exist or is empty"
|
||||
|
||||
def should_gen_file(self, new_file, base_file):
|
||||
"""figure out if new file should be generated from base_file"""
|
||||
self.is_valid_file(base_file)
|
||||
if (os.path.exists(new_file)
|
||||
and (os.path.getmtime(new_file) > os.path.getmtime(base_file))
|
||||
and (os.path.getsize(base_file) > 0)):
|
||||
logger.info("reusing %s", new_file)
|
||||
return False
|
||||
else:
|
||||
logger.info("generating %s", new_file)
|
||||
return True
|
||||
|
||||
def gen_sum_file(self, file, nsys_cmd):
|
||||
"""
|
||||
generates sum file from nsys trace with times per kernel and
|
||||
returns the name of the sum file
|
||||
"""
|
||||
import subprocess # nosec B404
|
||||
|
||||
file_dir = os.path.dirname(file)
|
||||
file_name = os.path.basename(file)
|
||||
|
||||
if not file_dir:
|
||||
file_dir = "."
|
||||
# Walk through trace and get the total non-overlapped time
|
||||
nsys_stats_file = os.path.join(file_dir,
|
||||
f"{file_name}_cuda_gpu_trace.csv")
|
||||
sum_file = os.path.join(file_dir,
|
||||
f"{file_name}_cuda_gpu_kernel_tracesum.csv")
|
||||
if self.should_gen_file(nsys_stats_file, file):
|
||||
cmd = [
|
||||
nsys_cmd,
|
||||
"stats",
|
||||
"-r",
|
||||
"cuda_gpu_trace",
|
||||
file,
|
||||
"-o",
|
||||
f"{file_dir}/{file_name}",
|
||||
]
|
||||
cmd_str = " ".join(cmd)
|
||||
logger.info("+ %s", cmd_str)
|
||||
# estimate time based on calibrated 240M/min
|
||||
file_size_mb = os.path.getsize(file) / 1e6
|
||||
logger.info(
|
||||
"nsys stats for %.2f MB file expected to take %.2f min",
|
||||
file_size_mb,
|
||||
file_size_mb / 240,
|
||||
)
|
||||
try:
|
||||
subprocess.run(cmd)
|
||||
except Exception:
|
||||
logger.error("%s failed; Use --nsys_cmd to specify nsys path",
|
||||
cmd_str)
|
||||
exit(1)
|
||||
logger.info("generating non-overalapped sum %s", sum_file)
|
||||
self.gen_nonoverlapped_sum_from_gputrace(nsys_stats_file, sum_file)
|
||||
self.is_valid_file(sum_file)
|
||||
logger.info("Finished generating %s", sum_file)
|
||||
return sum_file
|
||||
|
||||
def gen_graph(self, in_file, out_dir, title, nsys_cmd, engine_model):
|
||||
"""generates graph and csv file from in_file into out_dir"""
|
||||
# Initialize an empty DataFrame to store combined data
|
||||
combined_df = self.pd.DataFrame()
|
||||
for idx, (file, engine, model, total_sec) in enumerate(in_file):
|
||||
file_dir = os.path.dirname(file)
|
||||
file_name = os.path.basename(file)
|
||||
if not file_dir:
|
||||
file_dir = "."
|
||||
sum_file = self.gen_sum_file(file, nsys_cmd)
|
||||
# read kernel summary file
|
||||
df = self.pd.read_csv(sum_file)
|
||||
# annotate kernel to their categories
|
||||
assert engine_model.get(engine), f"engine {engine} unknown"
|
||||
assert engine_model[engine].get(model), f"model {model} unknown"
|
||||
# remove nsys-rep from file_name for shorter x-label
|
||||
file_name = file_name.replace(".nsys-rep", "")
|
||||
df["Model_Engine"] = f"{model}_{engine}_{file_name}_{idx}"
|
||||
self.anno_gpu_kernname(df, engine_model[engine][model])
|
||||
# patch in non-gpu time
|
||||
gpu_sec = round(df["Elapsed Time (sec)"].sum(), 1)
|
||||
total_sec = round(float(total_sec), 1)
|
||||
if total_sec < gpu_sec:
|
||||
logger.warning(
|
||||
"Elapsed sec %.2f < GPU sec %.2f resetting Elapsed sec ",
|
||||
total_sec,
|
||||
gpu_sec,
|
||||
)
|
||||
total_sec = gpu_sec
|
||||
nongpu_row = self.make_nongpu_row(df, total_sec - gpu_sec)
|
||||
df = self.pd.concat([df, nongpu_row], ignore_index=True)
|
||||
combined_df = self.pd.concat([combined_df, df], ignore_index=True)
|
||||
if out_dir is None:
|
||||
out_dir = "."
|
||||
else:
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
# generate html file
|
||||
self.make_html(combined_df, out_dir, title)
|
||||
|
||||
|
||||
def parse_tuple(s):
|
||||
return tuple(s.split(","))
|
||||
|
||||
|
||||
def main():
|
||||
logging.basicConfig(format=("%(asctime)s - %(levelname)s - %(message)s"),
|
||||
level=logging.INFO)
|
||||
parser = argparse.ArgumentParser(
|
||||
description=(
|
||||
"Process nsys rep and generate kernel non-overlapped cycles. \n"
|
||||
"Example:\n"
|
||||
"gputrc2graph.py --in_file d1.nsys-rep,trtllm,llama,100 \n"
|
||||
"d2.nsys-rep,trtllm,gpt-oss,102 "
|
||||
'--out_dir results/ --title "Model=gpt-oss TRTLLM chart"'),
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
)
|
||||
|
||||
# load supported engine_model
|
||||
engine_model_supported = load_engine_model()
|
||||
# Get a string representation of supported engine/model combinations
|
||||
engine_model_supported_str = ", ".join(
|
||||
f"{engine}:[{', '.join(models.keys())}]"
|
||||
for engine, models in engine_model_supported.items())
|
||||
parser.add_argument(
|
||||
"--in_file",
|
||||
type=parse_tuple,
|
||||
nargs="+",
|
||||
help=("list of (nsys-rep, engine, model, elapsed_nonprofiled_sec) "
|
||||
"separated by space. Elapsed_nonprofiled_sec is runtime without "
|
||||
"profiling used to calculate non-gpu time. Specify 0 to use "
|
||||
"elapsed time from nsys-rep but that might inflate non-gpu time. "
|
||||
f"Available engine:[model] are: {engine_model_supported_str} "
|
||||
f"Example: --in_file d1.nsys-rep,sglan,llama,100 "
|
||||
"d2.nsys-rep,trtllm,gpt-oss,102"),
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument("--out_dir", help=("output dir for result.csv/html"))
|
||||
parser.add_argument("--title", help=("title for html chart"))
|
||||
parser.add_argument(
|
||||
"--nsys_cmd",
|
||||
help=("nsys cmd, e.g. /usr/bin/nsys, Default: nsys"),
|
||||
default="nsys",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
gputrace = GPUTrace2Graph()
|
||||
gputrace.gen_graph(args.in_file, args.out_dir, args.title, args.nsys_cmd,
|
||||
engine_model_supported)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
BIN
tensorrt_llm/tools/profiler/nsys_profile_tools/images/csv.png
Normal file
BIN
tensorrt_llm/tools/profiler/nsys_profile_tools/images/csv.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 132 KiB |
BIN
tensorrt_llm/tools/profiler/nsys_profile_tools/images/html.png
Normal file
BIN
tensorrt_llm/tools/profiler/nsys_profile_tools/images/html.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 140 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 150 KiB |
@ -0,0 +1,62 @@
|
||||
{
|
||||
"trtllm": {
|
||||
"llama": {
|
||||
"Fused_Moe_Kernel|gemm::|fused_moe|bmm_|GemmUniversal": "moe_gemm",
|
||||
"gemm|nvjet_": "gemm",
|
||||
"moe|Expert|Moe": "moe",
|
||||
"CatArrayBatched": "prepare_next",
|
||||
"ncclDevKernel|AllReduce": "nccl_and_custom_ar",
|
||||
"RMSNormKernel": "norm",
|
||||
"topk": "topk",
|
||||
"act_and_mul_|Activation": "activation",
|
||||
"Rotary": "rope",
|
||||
"SoftMax": "softmax",
|
||||
"flash|splitKreduce|kernel_mha|mmha|fmha": "attn",
|
||||
"elementwise": "elementwise",
|
||||
"Quantize|cvt_": "quantize",
|
||||
"reduce_kernel": "reduce",
|
||||
"triton": "triton_kernel",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
},
|
||||
"ds": {
|
||||
"fp8_blockscale_gemm": "block_fp8_gemm",
|
||||
"gemm::GroupProblemShape|Fused_Moe_Kernel|bmm_": "moe_gemm",
|
||||
"gemm|matmul|nvjet|gemvx": "gemm",
|
||||
"moe|buildExpertMaps|Moe|Expert|Moe": "moe",
|
||||
"CatArrayBatched": "prepare_next",
|
||||
"ncclDevKernel|cross_device_reduce|AllReduce": "nccl_and_custom_ar",
|
||||
"Norm|_norm_": "norm",
|
||||
"topk": "topk",
|
||||
"act_and_mul_|Activation": "activation",
|
||||
"Rope": "rope",
|
||||
"elementwise": "elementwise",
|
||||
"fmha|flash_fwd_kernel": "attn",
|
||||
"Quantize|fp8_quant|quant_fp8|cvt_": "quantize",
|
||||
"reduce": "reduce",
|
||||
"SoftMax": "softmax",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
},
|
||||
"gpt-oss": {
|
||||
"block_fp8|gemm_fp8_blockwise": "block_fp8_gemm",
|
||||
"fused_moe_kernel|_group_gemm|GroupProblemShape|GemmUniversal|bmm_|matmul_ogs_|_topk_forward|_combined_routing|_sum_bitmatrix_rows|_compute_writeback_idx": "moe_gemm",
|
||||
"gemm|matmul|nvjet": "gemm",
|
||||
"moe|sigmoid|expert|splitKreduce|Moe": "moe",
|
||||
"CatArrayBatched": "prepare_next",
|
||||
"ncclDevKernel|cross_device_reduce|AllReduce": "nccl_and_custom_ar",
|
||||
"Norm|_norm_": "norm",
|
||||
"sbtopk": "topk",
|
||||
"act_and_mul_|Activation": "activation",
|
||||
"Rope": "rope",
|
||||
"elementwise": "elementwise",
|
||||
"fp8_quant|quant_fp8|cvt_": "quantize",
|
||||
"reduce": "reduce",
|
||||
"SoftMax": "softmax",
|
||||
"fmha|mha|flash_fwd_kernel": "attn",
|
||||
"triton": "triton_kernel",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
}
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user