mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
[None][doc] Replace the relative links with absolute links in README.md. (#8997)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
This commit is contained in:
parent
fcfe6f86f9
commit
70e4d97c37
32
README.md
32
README.md
@ -10,44 +10,44 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.<
|
||||
[](https://www.python.org/downloads/release/python-31012/)
|
||||
[](https://developer.nvidia.com/cuda-downloads)
|
||||
[](https://developer.nvidia.com/tensorrt)
|
||||
[](./tensorrt_llm/version.py)
|
||||
[](./LICENSE)
|
||||
[](https://github.com/NVIDIA/TensorRT-LLM/blob/release/1.1/tensorrt_llm/version.py)
|
||||
[](https://github.com/NVIDIA/TensorRT-LLM/blob/release/1.1/LICENSE)
|
||||
|
||||
[Architecture](./docs/source/torch/arch_overview.md) | [Performance](./docs/source/performance/perf-overview.md) | [Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html) | [Documentation](https://nvidia.github.io/TensorRT-LLM/) | [Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap)
|
||||
[Architecture](https://nvidia.github.io/TensorRT-LLM/developer-guide/overview.html) | [Performance](https://nvidia.github.io/TensorRT-LLM/developer-guide/perf-overview.html) | [Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html) | [Documentation](https://nvidia.github.io/TensorRT-LLM/) | [Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap)
|
||||
|
||||
---
|
||||
<div align="left">
|
||||
|
||||
## Tech Blogs
|
||||
* [09/19] Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html)
|
||||
|
||||
* [08/29] ADP Balance Strategy
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog10_ADP_Balance_Strategy.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog10_ADP_Balance_Strategy.html)
|
||||
|
||||
* [08/05] Running a High-Performance GPT-OSS-120B Inference Server with TensorRT LLM
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html)
|
||||
|
||||
* [08/01] Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html)
|
||||
|
||||
* [07/26] N-Gram Speculative Decoding in TensorRT LLM
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html)
|
||||
|
||||
* [06/19] Disaggregated Serving in TensorRT LLM
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html)
|
||||
|
||||
* [06/05] Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html)
|
||||
|
||||
* [05/30] Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html)
|
||||
|
||||
* [05/23] DeepSeek R1 MTP Implementation and Optimization
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html)
|
||||
|
||||
* [05/16] Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs
|
||||
✨ [➡️ link](./docs/source/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html)
|
||||
|
||||
## Latest News
|
||||
* [08/05] 🌟 TensorRT LLM delivers Day-0 support for OpenAI's latest open-weights models: GPT-OSS-120B [➡️ link](https://huggingface.co/openai/gpt-oss-120b) and GPT-OSS-20B [➡️ link](https://huggingface.co/openai/gpt-oss-20b)
|
||||
@ -56,11 +56,11 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.<
|
||||
* [05/22] Blackwell Breaks the 1,000 TPS/User Barrier With Meta’s Llama 4 Maverick
|
||||
✨ [➡️ link](https://developer.nvidia.com/blog/blackwell-breaks-the-1000-tps-user-barrier-with-metas-llama-4-maverick/)
|
||||
* [04/10] TensorRT LLM DeepSeek R1 performance benchmarking best practices now published.
|
||||
✨ [➡️ link](./docs/source/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.md)
|
||||
✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html)
|
||||
|
||||
* [04/05] TensorRT LLM can run Llama 4 at over 40,000 tokens per second on B200 GPUs!
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
* [03/22] TensorRT LLM is now fully open-source, with developments moved to GitHub!
|
||||
@ -223,7 +223,7 @@ Serverless TensorRT LLM (LLaMA 3 8B) | Modal Docs [➡️ link](https://modal.co
|
||||
|
||||
TensorRT LLM is an open-sourced library for optimizing Large Language Model (LLM) inference. It provides state-of-the-art optimizations, including custom attention kernels, inflight batching, paged KV caching, quantization (FP8, [FP4](https://www.nvidia.com/en-us/data-center/technologies/blackwell-architecture/), INT4 [AWQ](https://arxiv.org/abs/2306.00978), INT8 [SmoothQuant](https://arxiv.org/abs/2211.10438), ...), speculative decoding, and much more, to perform inference efficiently on NVIDIA GPUs.
|
||||
|
||||
[Architected on PyTorch](https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/torch/arch_overview.md), TensorRT LLM provides a high-level Python [LLM API](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html#llm-api) that supports a wide range of inference setups - from single-GPU to multi-GPU or multi-node deployments. It includes built-in support for various parallelism strategies and advanced features. The LLM API integrates seamlessly with the broader inference ecosystem, including NVIDIA [Dynamo](https://github.com/ai-dynamo/dynamo) and the [Triton Inference Server](https://github.com/triton-inference-server/server).
|
||||
[Architected on PyTorch](https://github.com/NVIDIA/TensorRT-LLM/blob/release/1.1/docs/source/developer-guide/overview.md), TensorRT LLM provides a high-level Python [LLM API](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html#llm-api) that supports a wide range of inference setups - from single-GPU to multi-GPU or multi-node deployments. It includes built-in support for various parallelism strategies and advanced features. The LLM API integrates seamlessly with the broader inference ecosystem, including NVIDIA [Dynamo](https://github.com/ai-dynamo/dynamo) and the [Triton Inference Server](https://github.com/triton-inference-server/server).
|
||||
|
||||
TensorRT LLM is designed to be modular and easy to modify. Its PyTorch-native architecture allows developers to experiment with the runtime or extend functionality. Several popular models are also pre-defined and can be customized using [native PyTorch code](./tensorrt_llm/_torch/models/modeling_deepseekv3.py), making it easy to adapt the system to specific needs.
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user