mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-12 05:53:33 +08:00
Change from correctness check to functional check and unwaive the test.
Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com>
This commit is contained in:
parent
7175d89b48
commit
8922ca839f
@ -403,7 +403,6 @@ accuracy/test_llm_api_pytorch.py::TestNemotronH_56B_Base::test_auto_dtype[tp8-cu
|
||||
accuracy/test_llm_api_pytorch.py::TestNemotronUltra::test_fp8_prequantized[tp8ep4-cuda_graph=True] SKIP (https://nvbugs/5707145)
|
||||
accuracy/test_llm_api_pytorch.py::TestNemotronUltra::test_fp8_prequantized[tp8-cuda_graph=True] SKIP (https://nvbugs/5707145)
|
||||
accuracy/test_llm_api_pytorch.py::TestGPTOSS::test_w4_chunked_prefill[cutlass-auto] SKIP (https://nvbugs/5596343)
|
||||
unittest/_torch/speculative/test_spec_gate.py::test_spec_gate_e2e SKIP (https://nvbugs/5710045)
|
||||
accuracy/test_llm_api_pytorch.py::TestLlama3_1_8BInstruct::test_ngram SKIP (https://nvbugs/5569696)
|
||||
accuracy/test_llm_api_pytorch.py::TestDeepSeekR1::test_fp8_blockscale[throughput_mtp_trtllm] SKIP (https://nvbugs/5715568)
|
||||
accuracy/test_llm_api_pytorch.py::TestDeepSeekR1::test_fp8_blockscale[throughput_mtp] SKIP (https://nvbugs/5715568)
|
||||
|
||||
@ -1,28 +1,34 @@
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from utils.llm_data import llm_models_root
|
||||
from utils.util import similar, skip_blackwell
|
||||
|
||||
from tensorrt_llm import LLM, SamplingParams
|
||||
from tensorrt_llm._torch.speculative.speculation_gate import SpeculationGate
|
||||
from tensorrt_llm.llmapi import (CudaGraphConfig, EagleDecodingConfig,
|
||||
KvCacheConfig)
|
||||
from tensorrt_llm.logger import logger
|
||||
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
||||
|
||||
|
||||
# It tests the end-to-end functionality of the SpeculationGate,
|
||||
# which will turn off spec decode when the average acceptance length is below the threshold.
|
||||
# It is set with acceptance window and acceptance threshold in spec_config.
|
||||
# This test set the max_concurrency to a large value to prevent spec decode turned off due to number of effective requests > max_concurrency,
|
||||
# So that we can only focus on the turning off effect from the SpeculationGate.
|
||||
@skip_blackwell # TODO: Remove after fixing TRTLLM-GEN FMHA segfault on Blackwell. NVBugs: https://nvbugspro.nvidia.com/bug/5698292
|
||||
@pytest.fixture(scope="function")
|
||||
def enforce_single_worker(monkeypatch):
|
||||
"""Mock functions don't work with multiple processes, so we enforce single worker."""
|
||||
monkeypatch.setenv("TLLM_WORKER_USE_SINGLE_PROCESS", "1")
|
||||
yield
|
||||
|
||||
|
||||
# Tests that the SpeculationGate correctly disables speculative decoding
|
||||
# when the average acceptance rate drops below the threshold.
|
||||
# This test uses a mock to simulate low acceptance rates and verifies
|
||||
# that the spec gate triggers and disables speculation.
|
||||
@pytest.mark.high_cuda_memory
|
||||
def test_spec_gate_e2e():
|
||||
def test_spec_gate_e2e(enforce_single_worker):
|
||||
total_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
|
||||
if total_mem_gb < 35:
|
||||
pytest.skip("Not enough memory to load target + draft model")
|
||||
@ -32,6 +38,8 @@ def test_spec_gate_e2e():
|
||||
|
||||
max_batch_size = 2
|
||||
max_draft_len = 4
|
||||
acceptance_window = 3
|
||||
acceptance_threshold = 0.6
|
||||
kv_cache_config = KvCacheConfig(enable_block_reuse=True, max_tokens=8192)
|
||||
cuda_graph_config = CudaGraphConfig(batch_sizes=[1])
|
||||
|
||||
@ -48,40 +56,88 @@ def test_spec_gate_e2e():
|
||||
spec_config = EagleDecodingConfig(
|
||||
max_draft_len=max_draft_len,
|
||||
speculative_model_dir=eagle_model_dir,
|
||||
# Llama 3 does not support one model eagle.
|
||||
eagle3_one_model=False,
|
||||
max_concurrency=10000,
|
||||
acceptance_window=5,
|
||||
acceptance_length_threshold=0.6,
|
||||
acceptance_window=acceptance_window,
|
||||
acceptance_length_threshold=acceptance_threshold,
|
||||
)
|
||||
|
||||
llm_spec = LLM(**llm_common_config, speculative_config=spec_config)
|
||||
# Output tests
|
||||
prompts = [
|
||||
"The capital of France is",
|
||||
"The president of the United States is",
|
||||
"What is the capital of Australia?",
|
||||
"Explain in one sentence why the sky is blue.",
|
||||
"Who wrote the book 'Pride and Prejudice'?",
|
||||
"List three U.S. national holidays in the year 2025.",
|
||||
"What is the currency of Japan?",
|
||||
"How many players are on a basketball court for one team?",
|
||||
"List three primary colors.",
|
||||
]
|
||||
sampling_params = SamplingParams(max_tokens=32, temperature=0)
|
||||
sampling_params = SamplingParams(max_tokens=20, temperature=0)
|
||||
|
||||
# Track calls to record_avg_decoded and the disabled state
|
||||
gate_state = {"record_calls": [], "gate_disabled": False}
|
||||
|
||||
original_record_avg_decoded = SpeculationGate.record_avg_decoded
|
||||
|
||||
def mock_record_avg_decoded(self,
|
||||
avg_decoded_tokens_per_iter,
|
||||
request_id=None):
|
||||
"""
|
||||
Mock that simulates low acceptance rate (1.2 tokens/iter = 0.2 accepted).
|
||||
This is below the threshold of 0.6, so the gate should trigger after the window fills.
|
||||
"""
|
||||
# Simulate low acceptance: avg_decoded = 1.2 means accepted_len = 0.2
|
||||
# This is below threshold (0.6), so gate should trigger
|
||||
simulated_low_avg = 1.2
|
||||
disabled_now, avg = original_record_avg_decoded(self, simulated_low_avg,
|
||||
request_id)
|
||||
|
||||
gate_state["record_calls"].append({
|
||||
"original_avg": avg_decoded_tokens_per_iter,
|
||||
"simulated_avg": simulated_low_avg,
|
||||
"disabled_now": disabled_now,
|
||||
"avg_accept": avg,
|
||||
"request_id": request_id,
|
||||
})
|
||||
if disabled_now:
|
||||
gate_state["gate_disabled"] = True
|
||||
|
||||
return disabled_now, avg
|
||||
|
||||
llm_spec = LLM(**llm_common_config, speculative_config=spec_config)
|
||||
|
||||
with patch.object(SpeculationGate, 'record_avg_decoded',
|
||||
mock_record_avg_decoded):
|
||||
llm_spec.generate(prompts, sampling_params)
|
||||
|
||||
# Verify the mock was called (requests completed)
|
||||
assert len(gate_state["record_calls"]
|
||||
) > 0, "record_avg_decoded should have been called"
|
||||
|
||||
# Verify the gate was disabled after enough requests with low acceptance
|
||||
assert gate_state["gate_disabled"], \
|
||||
f"Gate should have been disabled with simulated low acceptance. Calls: {gate_state['record_calls']}"
|
||||
|
||||
# Verify the gate triggered at the right time (after window is filled)
|
||||
# The gate should trigger on the `acceptance_window`-th call (index = window - 1)
|
||||
disable_indices = [
|
||||
i for i, call in enumerate(gate_state["record_calls"])
|
||||
if call["disabled_now"]
|
||||
]
|
||||
assert len(disable_indices) == 1, \
|
||||
f"Gate should have triggered exactly once, but triggered at indices: {disable_indices}"
|
||||
assert disable_indices[0] >= acceptance_window - 1, \
|
||||
f"Gate should trigger after window ({acceptance_window}) is filled, but triggered at index {disable_indices[0]}"
|
||||
|
||||
# Verify the average acceptance was below threshold when disabled
|
||||
disable_call = gate_state["record_calls"][disable_indices[0]]
|
||||
assert disable_call["avg_accept"] is not None
|
||||
assert disable_call["avg_accept"] < acceptance_threshold, \
|
||||
f"Avg acceptance ({disable_call['avg_accept']}) should be below threshold ({acceptance_threshold})"
|
||||
|
||||
logger.debug(
|
||||
f"Gate correctly triggered after {disable_indices[0] + 1} requests")
|
||||
logger.debug(
|
||||
f"Final avg acceptance: {disable_call['avg_accept']:.3f} < threshold {acceptance_threshold}"
|
||||
)
|
||||
|
||||
results_spec = llm_spec.generate(prompts, sampling_params)
|
||||
generated_text_spec = [result.outputs[0].text for result in results_spec]
|
||||
llm_spec.shutdown()
|
||||
|
||||
llm_ref = LLM(**llm_common_config)
|
||||
results_ref = llm_ref.generate(prompts, sampling_params)
|
||||
generated_text_ref = [result.outputs[0].text for result in results_ref]
|
||||
llm_ref.shutdown()
|
||||
|
||||
for text_spec, text_ref in zip(generated_text_spec, generated_text_ref):
|
||||
assert similar(text_spec, text_ref)
|
||||
|
||||
|
||||
def test_returns_none_until_window_and_enabled_when_above_threshold():
|
||||
gate = SpeculationGate(window=3, threshold=0.5)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user