diff --git a/README.md b/README.md index 3055a77808..cd1599b222 100644 --- a/README.md +++ b/README.md @@ -10,10 +10,10 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.< [![python](https://img.shields.io/badge/python-3.10-green)](https://www.python.org/downloads/release/python-31012/) [![cuda](https://img.shields.io/badge/cuda-13.0.0-green)](https://developer.nvidia.com/cuda-downloads) [![trt](https://img.shields.io/badge/TRT-10.13.2-green)](https://developer.nvidia.com/tensorrt) -[![version](https://img.shields.io/badge/release-1.2.0rc3-green)](./tensorrt_llm/version.py) -[![license](https://img.shields.io/badge/license-Apache%202-blue)](./LICENSE) +[![version](https://img.shields.io/badge/release-1.2.0rc3-green)](https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/version.py) +[![license](https://img.shields.io/badge/license-Apache%202-blue)](https://github.com/NVIDIA/TensorRT-LLM/blob/main/LICENSE) -[Architecture](./docs/source/torch/arch_overview.md)   |   [Performance](./docs/source/performance/perf-overview.md)   |   [Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html)   |   [Documentation](https://nvidia.github.io/TensorRT-LLM/)   |   [Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap) +[Architecture](https://nvidia.github.io/TensorRT-LLM/developer-guide/overview.html)   |   [Performance](https://nvidia.github.io/TensorRT-LLM/developer-guide/perf-overview.html)   |   [Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html)   |   [Documentation](https://nvidia.github.io/TensorRT-LLM/)   |   [Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap) ---
@@ -21,40 +21,40 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.< ## Tech Blogs * [10/13] Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary) -✨ [➡️ link](./docs/source/blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html) * [09/26] Inference Time Compute Implementation in TensorRT LLM -✨ [➡️ link](./docs/source/blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html) * [09/19] Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly -✨ [➡️ link](./docs/source/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html) * [08/29] ADP Balance Strategy -✨ [➡️ link](./docs/source/blogs/tech_blog/blog10_ADP_Balance_Strategy.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog10_ADP_Balance_Strategy.html) * [08/05] Running a High-Performance GPT-OSS-120B Inference Server with TensorRT LLM -✨ [➡️ link](./docs/source/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html) * [08/01] Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization) -✨ [➡️ link](./docs/source/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html) * [07/26] N-Gram Speculative Decoding in TensorRT LLM -✨ [➡️ link](./docs/source/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html) * [06/19] Disaggregated Serving in TensorRT LLM -✨ [➡️ link](./docs/source/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html) * [06/05] Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP) -✨ [➡️ link](./docs/source/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html) * [05/30] Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers -✨ [➡️ link](./docs/source/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html) * [05/23] DeepSeek R1 MTP Implementation and Optimization -✨ [➡️ link](./docs/source/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html) * [05/16] Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs -✨ [➡️ link](./docs/source/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html) ## Latest News * [08/05] 🌟 TensorRT LLM delivers Day-0 support for OpenAI's latest open-weights models: GPT-OSS-120B [➡️ link](https://huggingface.co/openai/gpt-oss-120b) and GPT-OSS-20B [➡️ link](https://huggingface.co/openai/gpt-oss-20b) @@ -63,11 +63,11 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.< * [05/22] Blackwell Breaks the 1,000 TPS/User Barrier With Meta’s Llama 4 Maverick ✨ [➡️ link](https://developer.nvidia.com/blog/blackwell-breaks-the-1000-tps-user-barrier-with-metas-llama-4-maverick/) * [04/10] TensorRT LLM DeepSeek R1 performance benchmarking best practices now published. -✨ [➡️ link](./docs/source/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.md) +✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html) * [04/05] TensorRT LLM can run Llama 4 at over 40,000 tokens per second on B200 GPUs! -![L4_perf](./docs/source/media/l4_launch_perf.png) +![L4_perf](https://raw.githubusercontent.com/NVIDIA/TensorRT-LLM/main/docs/source/media/l4_launch_perf.png) * [03/22] TensorRT LLM is now fully open-source, with developments moved to GitHub!