diff --git a/README.md b/README.md
index 3055a77808..cd1599b222 100644
--- a/README.md
+++ b/README.md
@@ -10,10 +10,10 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.<
[](https://www.python.org/downloads/release/python-31012/)
[](https://developer.nvidia.com/cuda-downloads)
[](https://developer.nvidia.com/tensorrt)
-[](./tensorrt_llm/version.py)
-[](./LICENSE)
+[](https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/version.py)
+[](https://github.com/NVIDIA/TensorRT-LLM/blob/main/LICENSE)
-[Architecture](./docs/source/torch/arch_overview.md) | [Performance](./docs/source/performance/perf-overview.md) | [Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html) | [Documentation](https://nvidia.github.io/TensorRT-LLM/) | [Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap)
+[Architecture](https://nvidia.github.io/TensorRT-LLM/developer-guide/overview.html) | [Performance](https://nvidia.github.io/TensorRT-LLM/developer-guide/perf-overview.html) | [Examples](https://nvidia.github.io/TensorRT-LLM/quick-start-guide.html) | [Documentation](https://nvidia.github.io/TensorRT-LLM/) | [Roadmap](https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap)
---
@@ -21,40 +21,40 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.<
## Tech Blogs
* [10/13] Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html)
* [09/26] Inference Time Compute Implementation in TensorRT LLM
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html)
* [09/19] Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html)
* [08/29] ADP Balance Strategy
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog10_ADP_Balance_Strategy.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog10_ADP_Balance_Strategy.html)
* [08/05] Running a High-Performance GPT-OSS-120B Inference Server with TensorRT LLM
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html)
* [08/01] Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html)
* [07/26] N-Gram Speculative Decoding in TensorRT LLM
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html)
* [06/19] Disaggregated Serving in TensorRT LLM
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html)
* [06/05] Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html)
* [05/30] Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html)
* [05/23] DeepSeek R1 MTP Implementation and Optimization
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html)
* [05/16] Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs
-✨ [➡️ link](./docs/source/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html)
## Latest News
* [08/05] 🌟 TensorRT LLM delivers Day-0 support for OpenAI's latest open-weights models: GPT-OSS-120B [➡️ link](https://huggingface.co/openai/gpt-oss-120b) and GPT-OSS-20B [➡️ link](https://huggingface.co/openai/gpt-oss-20b)
@@ -63,11 +63,11 @@ state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.<
* [05/22] Blackwell Breaks the 1,000 TPS/User Barrier With Meta’s Llama 4 Maverick
✨ [➡️ link](https://developer.nvidia.com/blog/blackwell-breaks-the-1000-tps-user-barrier-with-metas-llama-4-maverick/)
* [04/10] TensorRT LLM DeepSeek R1 performance benchmarking best practices now published.
-✨ [➡️ link](./docs/source/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.md)
+✨ [➡️ link](https://nvidia.github.io/TensorRT-LLM/blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html)
* [04/05] TensorRT LLM can run Llama 4 at over 40,000 tokens per second on B200 GPUs!
-
+
* [03/22] TensorRT LLM is now fully open-source, with developments moved to GitHub!