[None][doc] Update Perf-Overview.md for release/1.0 (#7848)

Signed-off-by: zpatel <22306219+zbpatel@users.noreply.github.com>
Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
This commit is contained in:
Zac Patel 2025-09-21 22:38:16 -07:00 committed by Yanchao Lu
parent 57c098956e
commit c38d4cf6a6

View File

@ -23,13 +23,18 @@ The performance numbers below were collected using the steps described in this d
Testing was performed on models with weights quantized using [ModelOpt](https://nvidia.github.io/TensorRT-Model-Optimizer/#) and published by NVIDIA on the [Model Optimizer HuggingFace Collection](https://huggingface.co/collections/nvidia/model-optimizer-66aa84f7966b3150262481a4).
*(NEW for v1.0) RTX 6000 Pro Blackwell Server Edition Benchmarks:*
RTX 6000 Pro Blackwell Server Edition data is now included in the perf overview. RTX 6000 systems can benefit from enabling pipeline parallelism (PP) in LLM workloads, so we included several new benchmarks for this GPU at various TP x PP combinations. That data is presented in a separate table for each network.
### Hardware
The following GPU variants were used for testing:
- H100 SXM 80GB (DGX H100)
- H200 SXM 141GB (DGX H200)
- GH200 96GB HBM3 (480GB LPDDR5X)
- B200 180GB (DGX B200)
- GB200 192GB (GB200 NVL72)
- RTX 6000 Pro Blackwell Server Edition
Other hardware variants may have different TDP, memory bandwidth, core count, or other features leading to performance differences on these workloads.
@ -38,46 +43,11 @@ Other hardware variants may have different TDP, memory bandwidth, core count, or
```text
nvidia/Llama-3.3-70B-Instruct-FP4
nvidia/Llama-3.1-405B-Instruct-FP4
nvidia/Qwen3-235B-A22B-FP4
nvidia/Qwen3-30B-A3B-FP4
nvidia/DeepSeek-R1-0528-FP4
```
#### Llama 3.3 70B FP4
| | GPU: | B200 | GB200 |
|:-----------------------------|:---|:----------|:--------------|
| | TP Size | 1 | 1 |
| ISL, OSL | | | |
| | | | |
| 128, 128 | | 10,613.84 | 11,100.97 |
| 128, 2048 | | 9,445.51 | 10,276.05 |
| 128, 4096 | | 6,276.85 | 7,351.12 |
| 500, 2000 | | 6,983.27 | 8,194.30 |
| 1000, 1000 | | 6,434.29 | 7,401.80 |
| 1000, 2000 | | 6,725.03 | 6,478.72 |
| 1024, 2048 | | 6,546.61 | 7,922.88 |
| 2048, 128 | | 1,330.35 | 1,418.47 |
| 2048, 2048 | | 4,528.48 | 5,326.77 |
| 5000, 500 | | 1,427.44 | 1,502.44 |
| 20000, 2000 | | 636.36 | 732.43 |
#### Llama 3.1 405B FP4
| | GPU: | B200 | GB200 |
|:-----------------------------|:---|:---------|:--------------|
| | TP Size | 4 | 4 |
| ISL, OSL | | | |
| | | | |
| 128, 128 | | 6,218.89 | 6,598.97 |
| 128, 2048 | | 7,178.10 | 7,497.40 |
| 128, 4096 | | 5,890.89 | 5,898.19 |
| 500, 2000 | | 5,844.37 | 6,198.33 |
| 1000, 1000 | | 4,958.53 | 5,243.35 |
| 1000, 2000 | | 4,874.16 | 4,905.51 |
| 1024, 2048 | | 4,833.19 | 4,686.38 |
| 2048, 128 | | 737.95 | 761.58 |
| 2048, 2048 | | 4,024.02 | 4,326.56 |
| 5000, 500 | | 1,032.40 | 1,078.87 |
| 20000, 2000 | | 667.39 | 649.95 |
### FP8 Models
```text
@ -85,81 +55,191 @@ nvidia/Llama-3.1-8B-Instruct-FP8
nvidia/Llama-3.3-70B-Instruct-FP8
nvidia/Llama-3.1-405B-Instruct-FP8
nvidia/Llama-4-Maverick-17B-128E-Instruct-FP8
nvidia/Qwen3-235B-A22B-FP8
```
#### Llama 3.1 8B FP8
#### Llama 4 Scout
| | GPU: | GH200 | H100 | H200 |
|:-----------------------------|:---|:--------------|:-----------------|:------------------|
| | TP Size | 1 | 1 | 1 |
| ISL, OSL | | | | |
| | | | | |
| 128, 128 | | 27,304.25 | 26,401.48 | 27,027.80 |
| 128, 2048 | | 24,045.60 | 21,413.21 | 23,102.25 |
| 128, 4096 | | 15,409.85 | 13,541.54 | 17,396.83 |
| 500, 2000 | | 20,123.88 | 17,571.01 | 19,759.16 |
| 1000, 1000 | | 16,352.99 | 14,991.62 | 17,162.49 |
| 1000, 2000 | | 15,705.82 | 13,505.23 | 16,227.11 |
| 1024, 2048 | | 16,102.52 | 13,165.91 | 16,057.66 |
| 2048, 128 | | 3,573.85 | 3,275.55 | 3,390.69 |
| 2048, 2048 | | 10,767.05 | 9,462.43 | 11,822.14 |
| 5000, 500 | | 3,584.74 | 3,276.47 | 3,758.08 |
| 20000, 2000 | | 1,393.31 | 1,340.69 | 1,705.68 |
| Sequence Length (ISL/OSL) | B200<br/>TP1 (FP4) | GB200<br/>TP1 (FP4) | H200<br/>TP4 (FP8) | H100<br/>TP4 (FP8) |
|---------------------------|---------------------|---------------------|-------------------|-------------------|
| 128/2048 | 14,699 | 15,238 | 34,316 | 15,130 |
| 128/4096 | 8,932 | 9,556 | 21,332 | 8,603 |
| 500/2000 | 11,977 | 11,795 | 24,630 | 12,399 |
| 1000/1000 | 10,591 | 7,738 | 21,636 | 12,129 |
| 1000/2000 | 9,356 | 8,581 | 18,499 | 9,838 |
| 2048/128 | 3,137 | 3,295 | 3,699 | 3,253 |
| 2048/2048 | 7,152 | 7,464 | 14,949 | 7,972 |
| 5000/500 | 2,937 | 3,107 | 4,605 | 3,342 |
| 20000/2000 | 1,644 | 1,767 | 2,105 | |
#### Llama 3.3 70B FP8
RTX 6000 Pro Blackwell Server Edition
| Sequence Length (ISL/OSL) | **4 GPUs**<br/>TP2,PP2 (FP4) | **8 GPUs**<br/>TP4,PP2 (FP4) |
|---|---|---|
| 128/2048 | 12,321 | 21,035 |
| 128/4096 | 7,643 | 13,421 |
| 1000/1000 | 9,476 | 15,781 |
| 1000/2000 | 8,919 | 16,434 |
| 2048/128 | 2,615 | 2,941 |
| 2048/2048 | 6,208 | 10,410 |
| 5000/500 | 2,662 | |
| | GPU: | H100 | H200 |
|:-----------------------------|:---|:-----------------|:------------------|
| | TP Size | 2 | 2 |
| ISL, OSL | | | |
| | | | |
| 128, 128 | | 6,092.28 | 6,327.98 |
| 128, 2048 | | 5,892.94 | 7,467.36 |
| 128, 4096 | | 3,828.46 | 5,526.42 |
| 500, 2000 | | 4,654.74 | 6,639.15 |
| 1000, 1000 | | 4,181.06 | 4,773.33 |
| 1000, 2000 | | 3,708.93 | 5,790.36 |
| 1024, 2048 | | 3,785.04 | 5,480.44 |
| 2048, 128 | | 723.40 | 747.55 |
| 2048, 2048 | | 2,785.53 | 3,775.80 |
| 5000, 500 | | 865.55 | 978.28 |
| 20000, 2000 | | 411.85 | 609.42 |
#### Llama 3.3 70B
| Sequence Length (ISL/OSL) | B200<br/>TP1 (FP4) | GB200<br/>TP1 (FP4) | H200<br/>TP1 (FP8) | H100<br/>TP2 (FP8) |
|---|---|---|---|---|
| 128/2048 | 9,922 | 11,309 | 4,336 | 6,651 |
| 128/4096 | 6,831 | 7,849 | 2,872 | 4,199 |
| 500/2000 | 7,762 | 9,028 | 3,666 | 5,222 |
| 1000/1000 | 7,007 | 7,326 | 2,909 | 4,205 |
| 1000/2000 | 6,271 | 6,513 | 2,994 | 4,146 |
| 2048/128 | 1,339 | 1,450 | 442 | 762 |
| 2048/2048 | 4,783 | 5,646 | 2,003 | 3,082 |
| 5000/500 | 1,459 | 1,602 | 566 | 898 |
| 20000/2000 | 665 | 755 | 283 | 437 |
RTX 6000 Pro Blackwell Server Edition
| Sequence Length (ISL/OSL) | **1 GPUs**<br/>TP1,PP1 (FP4) | **2 GPUs**<br/>TP1,PP2 (FP4) | **4 GPUs**<br/>TP1,PP4 (FP4) | **8 GPUs**<br/>TP1,PP8 (FP4) |
|---|---|---|---|---|
| 128/2048 | 2,422 | 4,993 | 7,922 | 9,833 |
| 128/4096 | 1,349 | 2,893 | 4,978 | 7,352 |
| 500/2000 | 1,856 | 4,114 | 6,939 | 9,435 |
| 1000/1000 | 1,787 | 3,707 | 5,961 | 8,166 |
| 1000/2000 | 1,594 | 2,993 | 5,274 | 6,943 |
| 2048/128 | 393 | 813 | 1,511 | 2,495 |
| 2048/2048 | 1,074 | 2,336 | 3,870 | 6,078 |
| 5000/500 | 401 | 812 | 1,511 | 2,491 |
| 20000/2000 | 142 | 319 | 630 | 1,148 |
#### Qwen3-235B-A22B
| Sequence Length (ISL/OSL) | B200<br/>TP8 (FP4) | H200<br/>TP8 (FP8) | H100<br/>TP8 (FP8) |
|---|---|---|---|
| 128/2048 | 66,057 | 42,821 | 19,658 |
| 128/4096 | 39,496 | 26,852 | 12,447 |
| 500/2000 | 57,117 | 28,026 | 18,351 |
| 1000/1000 | 42,391 | 23,789 | 14,898 |
| 1000/2000 | 34,105 | 22,061 | 15,136 |
| 2048/128 | 7,329 | 3,331 | |
| 2048/2048 | 26,854 | 16,672 | 9,924 |
| 5000/500 | 8,190 | 3,623 | 3,225 |
| 20000/2000 | 4,453 | 1,876 | |
RTX 6000 Pro Blackwell Server Edition
| Sequence Length (ISL/OSL) | **8 GPUs**<br/>TP2,PP4 (FP4) |
|---|---|
| 128/2048 | 12,494 |
| 128/4096 | 7,715 |
| 500/2000 | 11,157 |
| 1000/1000 | 10,697 |
| 1000/2000 | 10,109 |
| 2048/128 | 3,181 |
| 2048/2048 | 6,712 |
| 5000/500 | 3,173 |
#### Qwen3-30B-A3B
| Sequence Length (ISL/OSL) | B200<br/>TP1 (FP4) |
|---|---|
| 128/2048 | 37,844 |
| 128/4096 | 24,953 |
| 500/2000 | 27,817 |
| 1000/1000 | 25,828 |
| 1000/2000 | 22,051 |
| 2048/128 | 6,251 |
| 2048/2048 | 17,554 |
| 5000/500 | 6,142 |
| 20000/2000 | 2,944 |
RTX 6000 Pro Blackwell Server Edition
| Sequence Length (ISL/OSL) | **1 GPUs**<br/>TP1,PP1 (FP4) | **2 GPUs**<br/>TP2,PP1 (FP4) | **4 GPUs**<br/>TP4,PP1 (FP4) | **8 GPUs**<br/>TP8,PP1 (FP4) |
|---|---|---|---|---|
| 128/2048 | 12,540 | 22,744 | 35,715 | 52,676 |
| 128/4096 | 7,491 | 15,049 | 28,139 | 33,895 |
| 500/2000 | 10,695 | 17,266 | 26,175 | 44,088 |
| 1000/1000 | 9,910 | 16,431 | 24,046 | 31,785 |
| 1000/2000 | 8,378 | 13,323 | 25,131 | 28,881 |
| 2048/128 | 3,257 | 3,785 | 4,311 | 4,798 |
| 2048/2048 | 5,908 | 10,679 | 18,134 | 22,391 |
| 5000/500 | 2,530 | 3,799 | 5,212 | 5,965 |
| 20000/2000 | 871 | 1,558 | 2,551 | |
#### DeepSeek R1
| Sequence Length (ISL/OSL) | B200<br/>TP8 (FP4) |
|---|---|
| 128/2048 | 62,599 |
| 128/4096 | 44,046 |
| 1000/1000 | 37,634 |
| 1000/2000 | 40,538 |
| 2048/128 | 5,026 |
| 2048/2048 | 28,852 |
#### Llama 4 Maverick
| Sequence Length (ISL/OSL) | B200<br/>TP8 (FP4) | H200<br/>TP8 (FP8) | H100<br/>TP8 (FP8) |
|---|---|---|---|
| 128/2048 | 112,676 | 40,572 | 10,829 |
| 128/4096 | 68,170 | 24,616 | 6,744 |
| 500/2000 | | 37,835 | 10,108 |
| 1000/1000 | 79,617 | 31,782 | 9,677 |
| 1000/2000 | 63,766 | 34,734 | 9,151 |
| 2048/128 | 18,088 | 7,307 | |
| 2048/2048 | 52,195 | 20,957 | 6,916 |
| 5000/500 | | 8,456 | 3,457 |
| 20000/2000 | 12,678 | 4,106 | |
RTX 6000 Pro Blackwell Server Edition
| Sequence Length (ISL/OSL) | **8 GPUs**<br/>TP4,PP2 (FP4) |
|---|---|
| 128/2048 | 19,146 |
| 128/4096 | 12,165 |
| 500/2000 | 17,870 |
| 1000/1000 | 15,954 |
| 1000/2000 | 12,456 |
| 2048/128 | 4,463 |
| 2048/2048 | 10,727 |
| 5000/500 | 4,613 |
#### Llama 3.1 405B
| Sequence Length (ISL/OSL) | B200<br/>TP4 (FP4) | GB200<br/>TP4 (FP4) | H200<br/>TP8 (FP8) | H100<br/>TP8 (FP8) |
|---|---|---|---|---|
| 128/2048 | 8,020 | 8,151 | 5,348 | 4,340 |
| 128/4096 | 6,345 | 6,608 | 4,741 | 3,116 |
| 500/2000 | 6,244 | 6,540 | 4,724 | 3,994 |
| 1000/1000 | 5,209 | 5,389 | 3,330 | 2,919 |
| 1000/2000 | 4,933 | 5,135 | 3,722 | 2,895 |
| 2048/128 | 749 | 797 | 456 | 453 |
| 2048/2048 | 4,212 | 4,407 | 2,948 | 2,296 |
| 5000/500 | 1,048 | 1,112 | 650 | 610 |
| 20000/2000 | 672 | 739 | 505 | 345 |
RTX 6000 Pro Blackwell Server Edition
| Sequence Length (ISL/OSL) | **8 GPUs**<br/>TP1,PP8 (FP4) |
|---|---|
| 128/2048 | 2,981 |
| 1000/1000 | 2,369 |
| 1000/2000 | 1,931 |
| 2048/128 | 579 |
| 2048/2048 | 1,442 |
#### Llama 3.1 8B
| Sequence Length (ISL/OSL) | H200<br/>TP1 (FP8) | H100<br/>TP1 (FP8) |
|---|---|---|
| 128/2048 | 26,221 | 22,714 |
| 128/4096 | 18,027 | 14,325 |
| 500/2000 | 20,770 | 17,660 |
| 1000/1000 | 17,744 | 15,220 |
| 1000/2000 | 16,828 | 13,899 |
| 2048/128 | 3,538 | 3,450 |
| 2048/2048 | 12,194 | 9,305 |
| 5000/500 | 3,902 | 3,459 |
| 20000/2000 | 1,804 | 1,351 |
#### Llama 3.1 405B FP8
| | GPU: | H100 | H200 |
|:-----------------------------|:---|:-----------------|:------------------|
| | TP Size | 8 | 8 |
| Runtime Input/Output Lengths | | | |
| | | | |
| 128, 128 | | | 3,705.18 |
| 128, 2048 | | 4,517.39 | 4,715.13 |
| 128, 4096 | | 2,910.31 | 4,475.91 |
| 500, 2000 | | 3,664.62 | 4,804.10 |
| 1000, 1000 | | 2,955.50 | 3,208.25 |
| 1000, 2000 | | 2,884.69 | 3,630.29 |
| 1024, 2048 | | 3,237.41 | 3,609.50 |
| 2048, 128 | | 433.47 | 441.35 |
| 2048, 2048 | | 2,216.55 | 2,840.86 |
| 5000, 500 | | 579.05 | 645.26 |
| 20000, 2000 | | 363.27 | 509.87 |
#### Llama 4 Maverick FP8
Note: Performance for Llama 4 on sequence lengths less than 8,192 tokens is affected by an issue introduced in v0.21. To reproduce the Llama 4 performance noted here, please use v0.20
| | GPU | H200 | H100 |
|:-----------------------------|:---|:------------------|:-----------------|
| | TP Size | 8 | 8 |
| ISL, OSL | | | |
| | | | |
| 128, 2048 | | 27,543.87 | |
| 128, 4096 | | 18,541.01 | 11,163.12 |
| 500, 2000 | | 21,117.34 | |
| 1000, 2000 | | | 10,556.00 |
| 1024, 2048 | | 16,859.45 | 11,584.33 |
| 2048, 128 | | 4,364.06 | 3,832.38 |
| 2048, 2048 | | 12,800.89 | |
| 5000, 500 | | 5,128.60 | |
## Reproducing Benchmarked Results
@ -185,6 +265,7 @@ Starting with v0.19, testing was performed using the PyTorch backend - this work
| `$osl` | Benchmark output sequence length. |
| `$tp_size` | Tensor parallel mapping degree to run the benchmark with |
| `$pp_size` | Pipeline parallel mapping degree to run the benchmark with |
| `$ep_size` | Expert parallel mapping degree to run the benchmark with |
| `$model_name` | HuggingFace model name eg. meta-llama/Llama-2-7b-hf or use the path to a local weights directory |
| `$dataset_file` | Location of the dataset file generated by `prepare_dataset.py` |
| `$num_requests` | The number of requests to generate for dataset generation |
@ -231,11 +312,11 @@ To run the benchmark with the generated data set, simply use the `trtllm-bench t
run an offline maximum throughput scenario such that all requests are queued in rapid succession. You simply need to provide
a model name (HuggingFace reference or path to a local model), a [generated dataset](#preparing-a-dataset), and a file containing any desired extra options to the LLMApi (details in [tensorrt_llm/llmapi/llm_args.py:LlmArgs](../../../tensorrt_llm/llmapi/llm_args.py)).
```shell
trtllm-bench --model $model_name throughput --dataset $dataset_file --backend pytorch --extra_llm_api_options $llm_options
```
For dense / non-MoE models:
The data collected for the v0.21 benchmarks was run with the following file:
```shell
trtllm-bench --tp $tp_size --pp $pp_size --model $model_name throughput --dataset $dataset_file --backend pytorch --extra_llm_api_options $llm_options
```
`llm_options.yml`
```yaml
@ -259,6 +340,35 @@ cuda_graph_config:
- 8192
```
For MoE models:
```shell
trtllm-bench --tp $tp_size --pp $pp_size --ep $ep_size --model $model_name throughput --dataset $dataset_file --backend pytorch --extra_llm_api_options $llm_options
```
`llm_options.yml`
```yaml
enable_attention_dp: true
cuda_graph_config:
enable_padding: true
batch_sizes:
- 1
- 2
- 4
- 8
- 16
- 32
- 64
- 128
- 256
- 384
- 512
- 1024
- 2048
- 4096
- 8192
```
In many cases, we also use a higher KV cache percentage by setting `--kv_cache_free_gpu_mem_fraction 0.95` in the benchmark command. This allows us to obtain better performance than the default setting of `0.90`. We fall back to `0.90` or lower if out-of-memory errors are encountered.
The results will be printed to the terminal upon benchmark completion. For example,