Commit Graph

25 Commits

Author SHA1 Message Date
Daniel Stokes
ec6c7dff1a
feat: Add support for MXFP8xMXFP4 in pytorch (#5535)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-07-06 15:32:06 -07:00
Daniel Stokes
5773cfdcf2
feat: Add support for per expert activation scaling factors (#5013)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-28 09:10:35 +12:00
Daniel Stokes
83a1f60556
feat: Expose bias and FP8_MXFP4 MOE CUTLASS backend features to pytorch (#5410)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-27 12:29:34 +08:00
Daniel Stokes
942841417e
opensource: Opensource MOE MXFP8-MXFP4 implementation (#5222)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-26 12:18:19 +08:00
Enwei Zhu
4b82b8b4c7
[TRTLLM-5330] perf: Optimize MoE supplementary kernels for large-scale EP (#5215)
Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
2025-06-17 15:23:24 +08:00
yunruis
30c5b4183a
refactoring: port customized kernels with public cutlass version (#5027)
Signed-off-by: yunruis 

Merge this to unblock others since the full CI has been run through
2025-06-13 16:19:31 +08:00
Daniel Stokes
3a4851b7c3
feat: Add Mixture of Experts FP8xMXFP4 support (#4750)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-09 13:25:04 +08:00
Jinyang Yuan
5339d367ce
[perf] Reduce the workspace size of FP4 activation scales for MoE (#4303)
Signed-off-by: Jinyang Yuan <154768711+jinyangyuan-nvidia@users.noreply.github.com>
2025-05-30 09:03:52 +08:00
djns99
a030a898d1
perf: Fuse gemm setup function for SM90/SM100 MOE plugin path (#4146)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-05-21 10:00:36 +08:00
Barry Kang
20b42912ce
[TRTLLM-3330][feat] Support DeepSeek-R1 W4A8 on Hopper (#4123)
Support DeepSeek-R1 W4A8 on Hopper

Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Co-authored-by: Jiang Shao <91270701+StudyingShao@users.noreply.github.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
2025-05-14 15:48:07 +08:00
chenfeiz0326
7f5716ef83
Cherry-pick trtllm-gen from feat/llama4 to main (#4086)
* feat: TRT-LLM Gen FP8 MoE Llama4

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* feat: TRT-LLM Gen llama4 MoE Top1 routing

Signed-off-by: Jiqun Tu <jtu@nvidia.com>

* feat: add per tensor FP8 TRT-LLM Gen GEMMs

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add license for cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/gemmCubins

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add guard for routingIndicesClusterKernel

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

---------

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>
Signed-off-by: Jiqun Tu <jtu@nvidia.com>
Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>
Co-authored-by: Nikita Korobov <nkorobov@nvidia.com>
Co-authored-by: Jiqun Tu <jtu@nvidia.com>
2025-05-08 14:13:01 -07:00
Yuan Tong
4b6c19737b
feat: support add internal cutlass kernels as subproject (#3658)
Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>
2025-05-06 11:35:07 +08:00
Dom Brown
8709fe8b53
chore: bump version to 0.19.0 (#3598) (#3841)
test: add test cases for 0.19 release (#3608)

* fix test name



* add quickstart test for nemotron-ultra



* add rcca multi-node test case for deepseek-v3



* add rcca info



---------




squash (#3642)



fix: nvbugs/5187237: fix deterministic mode crash (#3448)

* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error

* remove waive


* Revert "remove waive"

This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.



* revert ar fusion



---------



update fp8 doc (#3647)




tests: change qa perf test to trtllm-bench (#3619)




 fix: FP8 quantized lm_head (NvBug 5214229) (#3567)



infra: Add PR approval protection for the release branch (#3634)



fix: nvbugs/5231298: pytorch allreduce issue (#3673)



Fix: nvbugs/5222698 variable not defined (#3630)

* Fix: nvbugs/5222698 variable not defined



* Tidy code



---------



test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)



test:restore fp8 kv cache testing for L0 (#3671)



doc: Update DeepSeek perf docs (#3693)

* Update DeepSeek perf docs



* update



* Apply suggestions from code review




---------




tests: waive test_llm_multi_node (#3664)



fix: update test_user_buffers_mm_add_prologue atol (#3711)



Fix: cherry-pick hmac encryption from main branch (#3635)

* security fix cherry-pick changes from main



* fix hmac in remote mpi session (#3649)



---------





Un-waive DS-V3-Lite tests. (#3621)



fix: FP8 kv accuracy (#3675)

* fix FP8 kv accuracy



* update doc



---------



Fix script options for engines. (#3622)



unwaive multi-node test (#3721)



chore : Split more tests out of gpt tests (#3524) (#3674)



doc:add torch examples link into torch backend documentation (#3749)




test: Get Eagle tests working (#3593) (#3722)




Waive L0 test (#3756)



waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)





Update ds v3 parameters in stress test. (#3676)

waive gemma on L20 (#3766)



https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)

Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.



fix: PP4 fixes and cleanup (#3688)




remove benchmark test list (#3643)



skip disagg deepseek test if sm!=90 (#3720)



test: skip failed cases on B200 (#3710)

* add skip condition to tests



* fix error



---------



test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)

* skip_pre_ada for fp8 cases



* update



* update after rebase



---------



add know issue to deepseek doc. (#3800)



Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)




Waive L0 tests (#3826)



fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)

* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.



* Fix fused_moe fallback issue. (#3652)

min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.



---------



[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)




Fix pre-commit



Fix again



Address some review comments for the MI

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
2025-04-29 16:57:22 +08:00
Zongfei Jing
1e5af736ea
Add smart router for moe (#3641)
Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>
2025-04-23 12:21:59 +08:00
Yukun He
c678774c99
feat: Apply the new torch-flow compatible AutoTuner to both Fused MoE and NVFP4 Linear operators. (#3151)
* Several optimizations and fixings on the Autotuner.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Apply the new Python side Autotuner on current linear for nvFP4 data type.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Apply the new Python side Autotuner on MoE op
* Remove routers from cache key to improve inference perf
* Prevent unnecessary code profiling. Use do_preparation keyword to select which part should be executed during before evaluating any tactic.
* Remove try-catch inside moe profiling process.
* Move default tactic -1 to 0 transforms in cpp runner.
* Revise relavant tests.
* Predefined the bucketizing strategy for fused_moe

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Add specific_profile support for AutoTuner to bypass the standard cache search process for perf optimization
* Add specific_profile for moe
* Add specific profile for linear

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Fixing and revising according to reviewer's suggestions.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Use lru_cache for inference pref optimization.
* Revert gen_custom_cache_key feature

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Replace runner with runner id to achieve a serializable cache.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Code clean up and minor fixings.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Move all tunable runners and custom ops into torch_custom_ops.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Treat min_latency_mode as a independent dynamic tensor. Modify get_valid_tactics to suit for it.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

---------

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
2025-04-08 14:28:36 +08:00
Gabriel Wu
05b50b297f
[feat] open source fp8_blockscale_gemm (#3071)
Signed-off-by: Zihua Wu <zihuaw@nvidia.com>
2025-04-02 12:12:52 +08:00
Zongfei Jing
c7548ad72c
perf: Add optimizations for deepseek in min latency mode (#3093)
* Add optimizations for deepseek min latency

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Fix compile error

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Update internal cutlass kernel libs

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Format code

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Resolve conflicts

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

---------

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>
2025-04-02 09:05:24 +08:00
Kaiyu Xie
3aa6b11d13
Update TensorRT-LLM (#2936)
* Update TensorRT-LLM

---------

Co-authored-by: changcui <cuichang147@gmail.com>
2025-03-18 21:25:19 +08:00
Kaiyu Xie
9b931c0f63
Update TensorRT-LLM (#2873) 2025-03-11 21:13:42 +08:00
Kaiyu Xie
77d7fe1eb2
Update TensorRT-LLM (#2849)
* Update TensorRT-LLM

---------

Co-authored-by: aotman <chenhangatm@gmail.com>
2025-03-04 18:44:00 +08:00
Kaiyu Xie
ab5b19e027
Update TensorRT-LLM (#2820) 2025-02-25 21:21:49 +08:00
Kaiyu Xie
2ea17cdad2
Update TensorRT-LLM (#2792)
* Update TensorRT-LLM

---------

Co-authored-by: jlee <jungmoolee@clika.io>
2025-02-18 21:27:39 +08:00
Kaiyu Xie
e88da961c5
Update TensorRT-LLM (#2783) 2025-02-13 18:40:22 +08:00
Dan Blanaru
16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00
Kaiyu Xie
aaacc9bd68
Update TensorRT-LLM (#2562)
* Update TensorRT-LLM

---------

Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
2024-12-11 00:31:05 -08:00