Commit Graph

8 Commits

Author SHA1 Message Date
Xiwen Yu
fa8b52ed33 fix more sm version check
Signed-off-by: Xiwen Yu <13230610+VALLIS-NERIA@users.noreply.github.com>
2025-08-23 15:17:59 +08:00
hlu1
8207d5fd39
[None] [feat] Add model gpt-oss (#6645)
Signed-off-by: Hao Lu <14827759+hlu1@users.noreply.github.com>
2025-08-07 03:04:18 -04:00
Dom Brown
44fb3c1673
[TRTLLM-5770] feat: Integrate TRT-LLM Gen FP8 block scale MoE with Pytorch workflow kernel autotuner (#5207)
- Adds a new Python custom op (fp8_block_scale_moe_runner) and a FP8BlockScaleMoERunner class for autotuning.
- Updates C++ MoE and batched GEMM kernels to accept a configIndex for workspace sizing and execution.
- Extends the unit test to run both autotuned and non-autotuned code paths.

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
2025-06-17 21:01:56 +08:00
Matthias Jouanneaux
a0b6c635b1
[feat] trtllmGen MoE routing: added support for top groups and top K bounds (#4063)
Signed-off-by: Matthias Jouanneaux <mjoux@nvidia.com>
Co-authored-by: hlu1 <14827759+hlu1@users.noreply.github.com>
Co-authored-by: Nikita Korobov <14355239+nekorobov@users.noreply.github.com>
2025-06-13 06:00:02 +08:00
Nikita Korobov
8043d7a03c
feat: update DeepSeek FP8 TRT-LLM Gen cubins (#4643)
Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>
2025-06-03 14:07:54 -07:00
Anthony Chang
bbea2647b1
Qwen3 supports TRTLLM FP4 MoE backend (#4530)
* MoE TRTLLM backend for Qwen3

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

* add extra moe_backend to test

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

* address comments

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

* conditionally compile kernels on newer archs

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

* missing positional arg

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

* Update the routing kernels

Signed-off-by: Christina Zhang <christinaz@nvidia.com>

* Revise usage of TLLM_LOG_ERROR

Signed-off-by: Christina Zhang <christinaz@nvidia.com>

* Add unit test for Qwen3 moe (trtllm_gen backend)

Signed-off-by: Christina Zhang <christinaz@nvidia.com>

* improve weight processing speed of moe_backend=TRTLLM; roughly 2x

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

* tidy and minor fix

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

* temporarily disable accuracy test that has known issue

Signed-off-by: Anthony Chang <anchengc@nvidia.com>

---------

Signed-off-by: Anthony Chang <anchengc@nvidia.com>
Signed-off-by: Christina Zhang <christinaz@nvidia.com>
Co-authored-by: Christina Zhang <christinaz@nvidia.com>
2025-05-23 18:31:08 +08:00
Nikita Korobov
fa3879629e
feat: TRT-LLM Gen integration for BMM and MoE refactoring (#4280)
- Adds BatchedGemm cubins and the respective call interface from TensorRT-LLM Generator. 
- Refactors TRT-LLM Gen MoE runner to call to BMM interface
- The accuracy is verified for DeepSeek R1 FP4 

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>
2025-05-16 13:31:53 +02:00
chenfeiz0326
7f5716ef83
Cherry-pick trtllm-gen from feat/llama4 to main (#4086)
* feat: TRT-LLM Gen FP8 MoE Llama4

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* feat: TRT-LLM Gen llama4 MoE Top1 routing

Signed-off-by: Jiqun Tu <jtu@nvidia.com>

* feat: add per tensor FP8 TRT-LLM Gen GEMMs

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add license for cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/gemmCubins

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add guard for routingIndicesClusterKernel

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

---------

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>
Signed-off-by: Jiqun Tu <jtu@nvidia.com>
Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>
Co-authored-by: Nikita Korobov <nkorobov@nvidia.com>
Co-authored-by: Jiqun Tu <jtu@nvidia.com>
2025-05-08 14:13:01 -07:00