Signed-off-by: Min Yu <171526537+yumin066@users.noreply.github.com>
Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>
Co-authored-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>
Update TRTLLM Cutlass MoE kernels with ReLU2 activation.
Nemotron-6 requires ReLU2 (i.e. squared ReLU) MoE activation function.
The PR adds this and adds an API to set the activation function, in general.
The ReLU2 changes are based on this FlashInfer PR: https://github.com/flashinfer-ai/flashinfer/pull/1954.
The PR also updates the Auto Deploy MoE backend for 16-bit and FP8 from
Triton (`torch.ops.auto_deploy.triton_moe_fused`, `torch.ops.auto_deploy.triton_quant_fp8_moe`) to TRTLLM/Cutlass (`torch.ops.auto_deploy.trtllm_moe_fused`, `torch.ops.auto_deploy.trtllm_quant_fp8_moe_fused`).
Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com>
Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>
Co-authored-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>
Support DeepSeek-R1 W4A8 on Hopper
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Co-authored-by: Jiang Shao <91270701+StudyingShao@users.noreply.github.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
test: add test cases for 0.19 release (#3608)
* fix test name
* add quickstart test for nemotron-ultra
* add rcca multi-node test case for deepseek-v3
* add rcca info
---------
squash (#3642)
fix: nvbugs/5187237: fix deterministic mode crash (#3448)
* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error
* remove waive
* Revert "remove waive"
This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.
* revert ar fusion
---------
update fp8 doc (#3647)
tests: change qa perf test to trtllm-bench (#3619)
fix: FP8 quantized lm_head (NvBug 5214229) (#3567)
infra: Add PR approval protection for the release branch (#3634)
fix: nvbugs/5231298: pytorch allreduce issue (#3673)
Fix: nvbugs/5222698 variable not defined (#3630)
* Fix: nvbugs/5222698 variable not defined
* Tidy code
---------
test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)
test:restore fp8 kv cache testing for L0 (#3671)
doc: Update DeepSeek perf docs (#3693)
* Update DeepSeek perf docs
* update
* Apply suggestions from code review
---------
tests: waive test_llm_multi_node (#3664)
fix: update test_user_buffers_mm_add_prologue atol (#3711)
Fix: cherry-pick hmac encryption from main branch (#3635)
* security fix cherry-pick changes from main
* fix hmac in remote mpi session (#3649)
---------
Un-waive DS-V3-Lite tests. (#3621)
fix: FP8 kv accuracy (#3675)
* fix FP8 kv accuracy
* update doc
---------
Fix script options for engines. (#3622)
unwaive multi-node test (#3721)
chore : Split more tests out of gpt tests (#3524) (#3674)
doc:add torch examples link into torch backend documentation (#3749)
test: Get Eagle tests working (#3593) (#3722)
Waive L0 test (#3756)
waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)
Update ds v3 parameters in stress test. (#3676)
waive gemma on L20 (#3766)
https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)
Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.
fix: PP4 fixes and cleanup (#3688)
remove benchmark test list (#3643)
skip disagg deepseek test if sm!=90 (#3720)
test: skip failed cases on B200 (#3710)
* add skip condition to tests
* fix error
---------
test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)
* skip_pre_ada for fp8 cases
* update
* update after rebase
---------
add know issue to deepseek doc. (#3800)
Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)
Waive L0 tests (#3826)
fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)
* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.
* Fix fused_moe fallback issue. (#3652)
min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.
---------
[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)
Fix pre-commit
Fix again
Address some review comments for the MI
Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
* Several optimizations and fixings on the Autotuner.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Apply the new Python side Autotuner on current linear for nvFP4 data type.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Apply the new Python side Autotuner on MoE op
* Remove routers from cache key to improve inference perf
* Prevent unnecessary code profiling. Use do_preparation keyword to select which part should be executed during before evaluating any tactic.
* Remove try-catch inside moe profiling process.
* Move default tactic -1 to 0 transforms in cpp runner.
* Revise relavant tests.
* Predefined the bucketizing strategy for fused_moe
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Add specific_profile support for AutoTuner to bypass the standard cache search process for perf optimization
* Add specific_profile for moe
* Add specific profile for linear
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Fixing and revising according to reviewer's suggestions.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Use lru_cache for inference pref optimization.
* Revert gen_custom_cache_key feature
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Replace runner with runner id to achieve a serializable cache.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Code clean up and minor fixings.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Move all tunable runners and custom ops into torch_custom_ops.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Treat min_latency_mode as a independent dynamic tensor. Modify get_valid_tactics to suit for it.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
---------
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>