* implement variable window attention by breaking the block manager into window block managers per window size
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* revert isCyclic to be true if the min attention window is reached, not per window size
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* add explanatory comment to mCyclicThreshold
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* load correct gemma config
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* don't shadow inputLength in addSequence - it should remain the function scope input length between window size loop iterations
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix KVCacheManagerVariableWindowAttentionWithReuseTest for multiple window block managers
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* if TYPE_CHECKING
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* set temp_attention_window_inputs to None explicitly
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* set temp_attention_window_inputs to None explicitly
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* pass dtype as well
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* test_gemma variable sliding window attention
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* allot a fraction of primary/secondaryBlocks to different window size heaps, depending on the window size's total contribution to the kvcache size (i.e., including all layers)
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* remove || mEnableBlockReuse which erroneously triggers beamsearch code for cyclic variable attention window code
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* turn off request delaying for MaxUtil
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* make comments better
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* windowSizesTotalSum using std::accumulate
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix error handling of forwardAsync - forwardAsync catch-all catch cleanup code that runs terminateRequest can also fail and must be caught
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix comments
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* remove assert that kills disagg tests, since it isn't necessary
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix corrupted expression: 'isNewTask && (peftCacheManager ?' -> '(isNewTask && peftCacheManager) ?' which caused boolean algebra. Main is correct
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* add Gemma3 to SUPPORTED_HF_ARCHITECTURES
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* support Gemma3
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* finally fix test_gemma - always spread at least {} into generate_summary_cmd, never None
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* finally fix test_gemma - always spread at least {} into generate_summary_cmd, never None
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix kvfactor field for deepseek
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix comment
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix gemma-3 entries in testlist to include vswa
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* only quantize gemma2 VSWA
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
remove misleading comment
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
fix test_gemma
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix test_gemma
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix test_gemma
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* in sendRequestInfo, fromOldAllocatedBlockIds->fromOldAllocatedBlockIds, like in main
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
* fix: disable KV cache reuse if using attention sink (#3021)
* fix: disable KV cache reuse if using attention sink
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* fix: disable KV cache reuse if sink bubble
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* add comment
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
---------
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
---------
Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
Co-authored-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* added files for nemotron-h
Signed-off-by: Luis Vega <lvega@nvidia.com>
* use try/except to import RMSNorm
Signed-off-by: Luis Vega <lvega@nvidia.com>
---------
Signed-off-by: Luis Vega <lvega@nvidia.com>
Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com>
* chore: unify pp_layers helpers
Fix assumptions about equal number of layers per PP rank
in prepare_attention_inputs
Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>
* fix: Fixing issue with first gen token being returned twice with streaming
Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>
* Fixing not_expectring_strings in test
Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>
---------
Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>
Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com>
* fix: add kv memory size per token of draft model to calculate max number
of tokens of kv cache
Signed-off-by: Hui Gao
* Fix code to get model_config of draft model
Signed-off-by: Hui Gao
---------
Signed-off-by: Hui Gao
* refactor: remove cumLogProbs and logProbs from DecoderBuffers
- Eliminated cumLogProbs and logProbs from DecoderBuffers, streamlining the buffer management.
- Updated related code in decoderBuffers.cpp and bindings.cpp to reflect these changes, ensuring that only host pointers are used for log probabilities.
These modifications enhance code clarity and maintainability by reducing redundancy in buffer management.
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* refactor: streamline sequence length handling in GptDecoderBatched and StatefulGptDecoderBatched
- Updated GptDecoderBatched to directly use output.sequenceLengths for lengths assignment, removing unnecessary reshaping.
- Adjusted StatefulGptDecoderBatched to ensure sequence lengths are correctly shaped based on actual batch size and max beam width.
These changes enhance clarity and maintainability in the decoding process.
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* refactor: integrate DecoderState for sequence length management in decoding process
- Updated DecoderBuffers to remove direct handling of sequence lengths, now utilizing DecoderState for this purpose.
- Adjusted MakeDecodingBatchInputOutput to accept DecoderState, enhancing clarity in the decoding input/output management.
- Refactored GptDecoderBatched and StatefulGptDecoderBatched to streamline sequence length handling, ensuring consistency across the decoding workflow.
refactor: update SlotDecoderBuffers to manage sequence lengths directly
- Introduced sequenceLengths and sequenceLengthsHost to SlotDecoderBuffers for better management of sequence lengths.
- Refactored asyncSend and recv methods to utilize the new sequenceLengths member, enhancing clarity and reducing redundancy.
- Updated TrtGptModelInflightBatching to align with the new structure, ensuring consistent handling of sequence lengths across the decoding process.
These changes improve maintainability and streamline the decoding workflow.
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* refactor: Delegate to asyncSend method in SlotDecoderBuffers
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
---------
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* feat: Add NVFP4 UB pattern optimization pass in torch compile
* Add an additional flag for UB fp4 pattern to avoid inverse the scale
* Add NVFP4 related UB patterns
Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
* Update atol, some points fails for B200 umbriel.
Signed-off-by: liji-nv <59594262+liji-nv@users.noreply.github.com>
---------
Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
Signed-off-by: liji-nv <59594262+liji-nv@users.noreply.github.com>
* Instead of allocating UserBuffers at beginning of runtime, UB buffers
are now managed with global allocator. The allocator will dynamically
assign free UB buffer or allocate new buffer for torch tensor. It makes
userbuffers easier to use.
* In common usecase, the Userbuffers will be allocated correctly during
warm up stage. There is no dynamic allocation during inference.
* UB fusion pattern is rewroten using the new UB Allocator. It contains
following passes:
1. Fuse Quant with allreduce, replace with UB impl, and insert a
copy_to_userbuffers. Currently the normal allreduce still does not
support FP8 quant. So this need to be done in UB pass
2. Convert all supported allreduce with UB and insert copy_to_userbuffers.
3. Fuse op before ar with the copy_to_userbuffers. So the op directly
writes to the userbuffer
4. Remove userbuffers finalize if the output is connect to another UB
allreduce.
Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
* feat: Add option to run disaggregated serving without ctx servers, to benchmark gen only
Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>
* Fixing comment in sanity check
Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>
---------
Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>
* refactor: Expose DecoderState via bindings and integrate in TRTLLMDecoder
- Introduced a new `DecoderState` class in the C++ bindings, encapsulating key functionalities for managing decoding state.
- Adjusted the Python `TRTLLMDecoder` to access properties from `decoder_state`, ensuring consistency and clarity in the decoding process.
These changes streamline the decoder's architecture and enhance maintainability.
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove unused new_tokens from DecoderState bindings
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
---------
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* init trtllm attn no cache
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* fix: fix the seq_len issue and attn metadata prepare for qwen reward model test
fix: fix minor bugs after rebase
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: remove unnecessary debug logs and clean up commented code
refactor: update max_seq_len documentation and remove max_seq_len for decoder model contructor in PyTorchModelEngine
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: update calculate_ref_result function to accept tensor inputs and mask type, enhance test_attention_no_cache to support FULL and CAUSAL masks
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: remove unused BERT attention metadata conversion method and add type assertion for no cache attention in PyTorchModelEngine
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: remove use_kv_cache parameter from attention function and related classes, update documentation for KV cache handling
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: implement setAttentionMaskType method for better mask type handling and remove unused conversion function
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: streamline KV cache handling by replacing direct member access with useKVCache method and simplify token per block assignment
remove Debug code.
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: Resolve comments for Python code
Simplify no cache attention metadata preparation and streamline related attributes in TrtllmAttentionMetadata
Removed the private method for converting to no cache attention metadata and integrated its logic into the prepare method. Updated the test for BERT sequence classification to reflect these changes and ensure proper handling of attention metadata.
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* docs: Add is_dummy_attention field to attention metadata for simulation operations
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* refactor: add KVCacheParams to attention backend interface and import relevant metadata classes
Updated the attention backend interface to include KVCacheParams and imported TrtllmAttentionMetadata and VanillaAttentionMetadata in model_engine.py for enhanced functionality.
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* fix: fix rebase format issue
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* fix: extend attention mask type handling in MHARunnerFixedParams
Added support for additional attention mask types (BIDIRECTIONAL, BIDIRECTIONALGLM, BLOCKSPARSE) in the MHARunnerFixedParams structure to fix the mapping issue between ContextAttentionMaskType and AttentionMaskType
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* fix: enhance attention mask type handling in TllmGenFmhaRunnerParams
Updated the setAttentionMaskType method to include a switch-case structure for better handling of attention mask types, ensuring proper mapping and error handling for invalid types.
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
---------
Signed-off-by: Qixiang Lin <qixiangl@nvidia.com>
* fix acceptance rate of pytorch workflow.
* revert the RequestOutput API change.
---------
Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>