Commit Graph

42 Commits

Author SHA1 Message Date
Min Yu
9cae7277ea
[https://nvbugs/5726962][feat] Apply fusion for W4AFP8_AWQ MoE (#9838)
Signed-off-by: Min Yu <171526537+yumin066@users.noreply.github.com>
Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>
Co-authored-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>
2026-01-06 10:16:41 +08:00
Yihan Wang
9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00
Wanli Jiang
5657a00ec0
[FMDL-1328][feat] Add support for nano-v3 and super-v3 with pytorch backend (#9261)
Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>
2025-12-02 13:40:20 +08:00
Neta Zmora
34dc6869f3
[#8732][feat] Update TRTLLM Cutlass MoE kernels with ReLU2 (#9011)
Update TRTLLM Cutlass MoE kernels with ReLU2 activation.

Nemotron-6 requires ReLU2 (i.e. squared ReLU) MoE activation function.
The PR adds this and adds an API to set the activation function, in general.
The ReLU2 changes are based on this FlashInfer PR: https://github.com/flashinfer-ai/flashinfer/pull/1954.

The PR also updates the Auto Deploy MoE backend for 16-bit and FP8 from
Triton (`torch.ops.auto_deploy.triton_moe_fused`, `torch.ops.auto_deploy.triton_quant_fp8_moe`) to TRTLLM/Cutlass (`torch.ops.auto_deploy.trtllm_moe_fused`, `torch.ops.auto_deploy.trtllm_quant_fp8_moe_fused`).

Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com>
Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>
Co-authored-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>
2025-11-13 16:54:45 -08:00
Bo Li
9c4432f8a4
[TRTLLM-7318][feat] MnnvlThroughput AlltoAll implementation. (#7499)
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
Co-authored-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
2025-10-27 13:23:06 -04:00
Jinyang Yuan
0a0f93d4a8
[None][fix] Fix the performance issue of FP8 blockwise grouped GEMM when using attention DP (#8501)
Signed-off-by: Jinyang Yuan <154768711+jinyangyuan-nvidia@users.noreply.github.com>
2025-10-27 10:18:19 +08:00
Void
336c2ef540
[None][feat] DeepEP LL fp8 dispatch/combine (#7927)
Signed-off-by: Yilin Zhang <18275976+yilin-void@users.noreply.github.com>
2025-09-25 09:20:24 +08:00
HuiGao-NV
29e63d3bc2
[https://nvbugs/5532248][fix] Fix fused_moe OOM (#7931)
Signed-off-by: Hui Gao <huig@nvidia.com>
2025-09-24 02:22:38 -07:00
xiweny
276d83c898
[https://nvbugs/5532225] [fix] MoE use stream-dependent workspace (#7940)
Signed-off-by: Xiwen Yu <13230610+VALLIS-NERIA@users.noreply.github.com>
2025-09-24 14:44:27 +08:00
Yilin Fan
261ffacfa4 [https://nvbugs/5412562][feat] Allocate MoE workspace only when necessary (release/1.0 retargeted) (#6955)
Signed-off-by: Yilin Fan <206948969+nv-yilinf@users.noreply.github.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
2025-09-01 11:02:31 +08:00
Bo Li
bf1b958f1a
[TRTLLM-7319][perf] Fuse slicing into MoE. (#6728)
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
Signed-off-by: Sergey Klevtsov <sklevtsov@nvidia.com>
Co-authored-by: Sergey Klevtsov <sklevtsov@nvidia.com>
2025-08-25 16:52:30 -04:00
Daniel Stokes
f7c597ec40
[None][perf] Make finalize fusion part of the tactic selection logic (#6915)
Signed-off-by: djns99 <40156487+djns99@users.noreply.github.com>
2025-08-21 14:08:03 -07:00
Yuening Li
1f8ae2b2db
[TRTLLM-5863][feat] Support MoE INT8 Weight-Only-Quantization in PyTorch Workflow (#6629)
Signed-off-by: Yuening Li <62227368+yueningl@users.noreply.github.com>
2025-08-15 17:15:49 -04:00
Sergey Klevtsov
27fc35175e
[None][feat] CUTLASS MoE FC2+Finalize fusion (#3294)
Signed-off-by: Sergey Klevtsov <sklevtsov@nvidia.com>
2025-08-12 15:56:48 +08:00
NVJiangShao
2f2f5cc72c
[TRTLLM-6744][feat] Remove input_sf swizzle for module WideEPMoE (#6231)
Signed-off-by: Jiang Shao <91270701+StudyingShao@users.noreply.github.com>
2025-08-08 11:13:42 +08:00
hlu1
8207d5fd39
[None] [feat] Add model gpt-oss (#6645)
Signed-off-by: Hao Lu <14827759+hlu1@users.noreply.github.com>
2025-08-07 03:04:18 -04:00
Jinyang Yuan
8b9a030a5c
[fix] Fix MoE workspace info by storing Torch tensor itself instead of data_ptr (#5900)
Signed-off-by: Jinyang Yuan <154768711+jinyangyuan-nvidia@users.noreply.github.com>
2025-07-10 20:07:32 +09:00
Daniel Stokes
ec6c7dff1a
feat: Add support for MXFP8xMXFP4 in pytorch (#5535)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-07-06 15:32:06 -07:00
Daniel Stokes
5773cfdcf2
feat: Add support for per expert activation scaling factors (#5013)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-28 09:10:35 +12:00
Daniel Stokes
83a1f60556
feat: Expose bias and FP8_MXFP4 MOE CUTLASS backend features to pytorch (#5410)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-27 12:29:34 +08:00
Daniel Stokes
942841417e
opensource: Opensource MOE MXFP8-MXFP4 implementation (#5222)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-26 12:18:19 +08:00
Enwei Zhu
4b82b8b4c7
[TRTLLM-5330] perf: Optimize MoE supplementary kernels for large-scale EP (#5215)
Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
2025-06-17 15:23:24 +08:00
yunruis
30c5b4183a
refactoring: port customized kernels with public cutlass version (#5027)
Signed-off-by: yunruis 

Merge this to unblock others since the full CI has been run through
2025-06-13 16:19:31 +08:00
Daniel Stokes
3a4851b7c3
feat: Add Mixture of Experts FP8xMXFP4 support (#4750)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-06-09 13:25:04 +08:00
Jinyang Yuan
5339d367ce
[perf] Reduce the workspace size of FP4 activation scales for MoE (#4303)
Signed-off-by: Jinyang Yuan <154768711+jinyangyuan-nvidia@users.noreply.github.com>
2025-05-30 09:03:52 +08:00
djns99
a030a898d1
perf: Fuse gemm setup function for SM90/SM100 MOE plugin path (#4146)
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
2025-05-21 10:00:36 +08:00
Barry Kang
20b42912ce
[TRTLLM-3330][feat] Support DeepSeek-R1 W4A8 on Hopper (#4123)
Support DeepSeek-R1 W4A8 on Hopper

Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Co-authored-by: Jiang Shao <91270701+StudyingShao@users.noreply.github.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
2025-05-14 15:48:07 +08:00
chenfeiz0326
7f5716ef83
Cherry-pick trtllm-gen from feat/llama4 to main (#4086)
* feat: TRT-LLM Gen FP8 MoE Llama4

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* feat: TRT-LLM Gen llama4 MoE Top1 routing

Signed-off-by: Jiqun Tu <jtu@nvidia.com>

* feat: add per tensor FP8 TRT-LLM Gen GEMMs

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Update

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add license for cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/gemmCubins

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Add guard for routingIndicesClusterKernel

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

* Guard sm90+ for routingkernels

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

---------

Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>
Signed-off-by: Jiqun Tu <jtu@nvidia.com>
Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>
Co-authored-by: Nikita Korobov <nkorobov@nvidia.com>
Co-authored-by: Jiqun Tu <jtu@nvidia.com>
2025-05-08 14:13:01 -07:00
Yuan Tong
4b6c19737b
feat: support add internal cutlass kernels as subproject (#3658)
Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>
2025-05-06 11:35:07 +08:00
Dom Brown
8709fe8b53
chore: bump version to 0.19.0 (#3598) (#3841)
test: add test cases for 0.19 release (#3608)

* fix test name



* add quickstart test for nemotron-ultra



* add rcca multi-node test case for deepseek-v3



* add rcca info



---------




squash (#3642)



fix: nvbugs/5187237: fix deterministic mode crash (#3448)

* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error

* remove waive


* Revert "remove waive"

This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.



* revert ar fusion



---------



update fp8 doc (#3647)




tests: change qa perf test to trtllm-bench (#3619)




 fix: FP8 quantized lm_head (NvBug 5214229) (#3567)



infra: Add PR approval protection for the release branch (#3634)



fix: nvbugs/5231298: pytorch allreduce issue (#3673)



Fix: nvbugs/5222698 variable not defined (#3630)

* Fix: nvbugs/5222698 variable not defined



* Tidy code



---------



test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)



test:restore fp8 kv cache testing for L0 (#3671)



doc: Update DeepSeek perf docs (#3693)

* Update DeepSeek perf docs



* update



* Apply suggestions from code review




---------




tests: waive test_llm_multi_node (#3664)



fix: update test_user_buffers_mm_add_prologue atol (#3711)



Fix: cherry-pick hmac encryption from main branch (#3635)

* security fix cherry-pick changes from main



* fix hmac in remote mpi session (#3649)



---------





Un-waive DS-V3-Lite tests. (#3621)



fix: FP8 kv accuracy (#3675)

* fix FP8 kv accuracy



* update doc



---------



Fix script options for engines. (#3622)



unwaive multi-node test (#3721)



chore : Split more tests out of gpt tests (#3524) (#3674)



doc:add torch examples link into torch backend documentation (#3749)




test: Get Eagle tests working (#3593) (#3722)




Waive L0 test (#3756)



waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)





Update ds v3 parameters in stress test. (#3676)

waive gemma on L20 (#3766)



https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)

Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.



fix: PP4 fixes and cleanup (#3688)




remove benchmark test list (#3643)



skip disagg deepseek test if sm!=90 (#3720)



test: skip failed cases on B200 (#3710)

* add skip condition to tests



* fix error



---------



test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)

* skip_pre_ada for fp8 cases



* update



* update after rebase



---------



add know issue to deepseek doc. (#3800)



Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)




Waive L0 tests (#3826)



fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)

* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.



* Fix fused_moe fallback issue. (#3652)

min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.



---------



[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)




Fix pre-commit



Fix again



Address some review comments for the MI

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
2025-04-29 16:57:22 +08:00
Zongfei Jing
1e5af736ea
Add smart router for moe (#3641)
Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>
2025-04-23 12:21:59 +08:00
Yukun He
c678774c99
feat: Apply the new torch-flow compatible AutoTuner to both Fused MoE and NVFP4 Linear operators. (#3151)
* Several optimizations and fixings on the Autotuner.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Apply the new Python side Autotuner on current linear for nvFP4 data type.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Apply the new Python side Autotuner on MoE op
* Remove routers from cache key to improve inference perf
* Prevent unnecessary code profiling. Use do_preparation keyword to select which part should be executed during before evaluating any tactic.
* Remove try-catch inside moe profiling process.
* Move default tactic -1 to 0 transforms in cpp runner.
* Revise relavant tests.
* Predefined the bucketizing strategy for fused_moe

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Add specific_profile support for AutoTuner to bypass the standard cache search process for perf optimization
* Add specific_profile for moe
* Add specific profile for linear

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Fixing and revising according to reviewer's suggestions.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Use lru_cache for inference pref optimization.
* Revert gen_custom_cache_key feature

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Replace runner with runner id to achieve a serializable cache.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Code clean up and minor fixings.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Move all tunable runners and custom ops into torch_custom_ops.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Treat min_latency_mode as a independent dynamic tensor. Modify get_valid_tactics to suit for it.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

---------

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
2025-04-08 14:28:36 +08:00
Gabriel Wu
05b50b297f
[feat] open source fp8_blockscale_gemm (#3071)
Signed-off-by: Zihua Wu <zihuaw@nvidia.com>
2025-04-02 12:12:52 +08:00
Zongfei Jing
c7548ad72c
perf: Add optimizations for deepseek in min latency mode (#3093)
* Add optimizations for deepseek min latency

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Fix compile error

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Update internal cutlass kernel libs

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Format code

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

* Resolve conflicts

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>

---------

Signed-off-by: Zongfei Jing <20381269+zongfeijing@users.noreply.github.com>
2025-04-02 09:05:24 +08:00
Kaiyu Xie
3aa6b11d13
Update TensorRT-LLM (#2936)
* Update TensorRT-LLM

---------

Co-authored-by: changcui <cuichang147@gmail.com>
2025-03-18 21:25:19 +08:00
Kaiyu Xie
9b931c0f63
Update TensorRT-LLM (#2873) 2025-03-11 21:13:42 +08:00
Kaiyu Xie
77d7fe1eb2
Update TensorRT-LLM (#2849)
* Update TensorRT-LLM

---------

Co-authored-by: aotman <chenhangatm@gmail.com>
2025-03-04 18:44:00 +08:00
Kaiyu Xie
ab5b19e027
Update TensorRT-LLM (#2820) 2025-02-25 21:21:49 +08:00
Kaiyu Xie
2ea17cdad2
Update TensorRT-LLM (#2792)
* Update TensorRT-LLM

---------

Co-authored-by: jlee <jungmoolee@clika.io>
2025-02-18 21:27:39 +08:00
Kaiyu Xie
e88da961c5
Update TensorRT-LLM (#2783) 2025-02-13 18:40:22 +08:00
Dan Blanaru
16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00
Kaiyu Xie
aaacc9bd68
Update TensorRT-LLM (#2562)
* Update TensorRT-LLM

---------

Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
2024-12-11 00:31:05 -08:00