- Adds a new Python custom op (fp8_block_scale_moe_runner) and a FP8BlockScaleMoERunner class for autotuning.
- Updates C++ MoE and batched GEMM kernels to accept a configIndex for workspace sizing and execution.
- Extends the unit test to run both autotuned and non-autotuned code paths.
Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
* MoE TRTLLM backend for Qwen3
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
* add extra moe_backend to test
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
* address comments
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
* conditionally compile kernels on newer archs
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
* missing positional arg
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
* Update the routing kernels
Signed-off-by: Christina Zhang <christinaz@nvidia.com>
* Revise usage of TLLM_LOG_ERROR
Signed-off-by: Christina Zhang <christinaz@nvidia.com>
* Add unit test for Qwen3 moe (trtllm_gen backend)
Signed-off-by: Christina Zhang <christinaz@nvidia.com>
* improve weight processing speed of moe_backend=TRTLLM; roughly 2x
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
* tidy and minor fix
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
* temporarily disable accuracy test that has known issue
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
---------
Signed-off-by: Anthony Chang <anchengc@nvidia.com>
Signed-off-by: Christina Zhang <christinaz@nvidia.com>
Co-authored-by: Christina Zhang <christinaz@nvidia.com>
* Add Julien's origina kernel.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Get rid of UpdateKVCache functionality.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Add kernels.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Add torch OP.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Update cmake.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Torch OP must use double as argument dtype.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Add unittest.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Add unittest.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Fix misaligned access when head_dim=64.
In this case, numElemsPerThread=2, numVecPerThread=0. But the store code incorrectly perform vectorized store, some threads (e.g., lane1) issue store to address that is not aligned to 64 bit.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Remove unroll (compiler can do that).
Cleanup code.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Add switch for interleave.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Refactor vectorized load/store.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Implement is_neox. Result not correct yet.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Fix is_neox=True.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* Add q_weight and k_weight.
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
---------
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
* first commit of cpp moe loadbalance code
Signed-off-by: Dongxu Yang <78518666+dongxuy04@users.noreply.github.com>
* add python bindings for moe load balance
Signed-off-by: Dongxu Yang <78518666+dongxuy04@users.noreply.github.com>
* add python wrapper, ut and bug fixes
Signed-off-by: Dongxu Yang <78518666+dongxuy04@users.noreply.github.com>
* add binding for layerId and update binding test
Signed-off-by: Dongxu Yang <78518666+dongxuy04@users.noreply.github.com>
* add host tensor sharing and ut
Signed-off-by: Dongxu Yang <78518666+dongxuy04@users.noreply.github.com>
---------
Signed-off-by: Dongxu Yang <78518666+dongxuy04@users.noreply.github.com>
This PR adds a customized allreduce to TensorRT-LLM. The new allreduce is used for communication on PCIe-based GPUs via low-precision quantization, which can accelerate the PCIe allreduce process.
Signed-off-by: Hui Kang <hkang@nvidia.com>
Co-authored-by: Hui Kang <hkang@nvidia.com>
- Adds BatchedGemm cubins and the respective call interface from TensorRT-LLM Generator.
- Refactors TRT-LLM Gen MoE runner to call to BMM interface
- The accuracy is verified for DeepSeek R1 FP4
Signed-off-by: Nikita Korobov <nkorobov@nvidia.com>
Signed-off-by: Hao Lu <14827759+hlu1@users.noreply.github.com@users.noreply.github.com>
Co-authored-by: Hao Lu <14827759+hlu1@users.noreply.github.com@users.noreply.github.com>
* chore: Remove GptSession/V1 from TRT workflow
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove stateful decoders
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove GptSession buffers
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove GptSession utils
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove GptSession kernels
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove V1 GPT models from tests
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove gptSessionBenchmark from scripts and docs
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove gptSession IO classes
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove GptSession from test lists
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove GptSession from docs
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove useless encoder test
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove mActualBatchSize from DecoderState
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
* chore: Remove static batching from ExecutorTest
- Updated `validateContextLogits` and `validateGenerationLogits` functions to remove the `batchingType` parameter.
- Adjusted related test functions to reflect the changes in parameter lists.
- Cleaned up the instantiation of test cases to eliminate unnecessary batchingType references.
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
---------
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
This PR adds a customized allreduce to TensorRT-LLM. The new allreduce is used for communication on PCIe-based GPUs via low-precision quantization, which can accelerate the PCIe allreduce process.
Signed-off-by: Hui Kang <hkang@nvidia.com>
Co-authored-by: Hui Kang <hkang@nvidia.com>
Support DeepSeek-R1 W4A8 on Hopper
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Co-authored-by: Jiang Shao <91270701+StudyingShao@users.noreply.github.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
* feat: Add heuristic for GroupRMSNorm kernel selection.
Implements a logistic regression model to dynamically select between:
- GroupRMSNormBaseKernel: Allocates warps proportional to sum of dimensions
(better SM occupancy in most cases)
- GroupRMSNormLargeBatch: Allocates warps proportional to max dimension
(better block scheduling in large batch scenarios)
Selection heuristic considers batch size, allocated warps, and scheduling
efficiency on the current GPU architecture. Models for Compute Capability
9.x and 10.x are trained base on nsys kernel runtime data.
The default kernel selection is the base kernel.
The python operator group_rms_norm will use the heuristic by default.
User can pick to use the base or large batch kernels as well.
Signed-off-by: Simeng Liu <simengl@nvidia.com>
* Address the comments.
Signed-off-by: Simeng Liu <simengl@nvidia.com>
---------
Signed-off-by: Simeng Liu <simengl@nvidia.com>
* Fallback to NCCL for various patterns when input size is large.
Move the previous implementation to cpp side.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
* Revising.
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
---------
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>