/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/runtime/iTensor.h" #include #include namespace tensorrt_llm::runtime { /// @brief Represents the inputs to the decoder. /// @details This input type is assumed immutable. It represents whatever the decoder received initially, and can always /// be referred to as such. class DecodingInput { public: using TensorConstPtr = ITensor::SharedConstPtr; using TensorPtr = ITensor::SharedPtr; DecodingInput() = default; //! Mandatory parameters //! The index of the decoding step we are on. Only used in Python runtime SizeType32 step{}; //! The maximum number of tokens to decode SizeType32 maxLength{}; //! The maximum length of the attention window to consider while decoding SizeType32 maxAttentionWindow{}; //! The number of tokens to use as attention sinks, https://arxiv.org/html/2309.17453v3 SizeType32 sinkTokenLength{}; //! The number of samples in the batch SizeType32 batchSize{}; //! The beam widths of each request, [batchSize] std::vector beamWidths; //! The maximum value in the `stopWordsLens` tensor SizeType32 maxStopWordsLen{}; //! The maximum value in the `badWordsLens` tensor SizeType32 maxBadWordsLen{}; //! The output of the model forward computation, a probability distribution over the vocabulary //! [batchSize][numGenTokens, beamWidth, vocabSizePadded] on gpu std::vector logitsVec; //! The end ids, [batchSize * beamWidth] on gpu TensorConstPtr endIds; //! Address map of the linear batch id to to the seq slots, [batchSize] on pinned, int32_t TensorConstPtr batchSlots; //! Optional parameters //! Finished states at current iteration (skip decoding step of a request if true), [batchSize, beamWidth] on gpu TensorConstPtr finishReasons; //! The maximum sequence length for each sequence in the batch, [batchSize] on gpu TensorConstPtr sequenceLimitLength; TensorConstPtr embeddingBias; // [batchSize, vocabSizePadded] on gpu TensorConstPtr lengths; // [batchSize, beamWidth] on gpu std::vector badWordsLists; // [batchSize][2, badWordsLength] on gpu TensorConstPtr badWordsPtrs; // [batchSize][2, badWordsLength] on pinned TensorConstPtr badWordsLens; // [batchSize] on gpu std::vector stopWordsLists; // [batchSize][2, stopWordsLength] on gpu TensorConstPtr stopWordsPtrs; // [batchSize][2, stopWordsLength] on pinned TensorConstPtr stopWordsLens; // [batchSize] on pinned TensorConstPtr noRepeatNgramSize; // [batchSize] on gpu //! Parameters for beam search //! KV cache index for beam search, [batchSize, beamWidth, maxSeqLen] on gpu TensorPtr cacheIndirection; //! Steps of each request, for Variable-Beam-Width-Search, [batchSize] std::optional> generationSteps; // Medusa class MedusaInputs { public: //! [batchSize, maxTokensPerStep, maxMedusaHeads + 1], on gpu TensorConstPtr medusaPaths; //! [batchSize, maxTokensPerStep], on gpu TensorConstPtr medusaTreeIds; //! [batchSize][maxAcceptedDraftTokensPerStep][maxDraftTokens + 1, vocabSizePadded], on gpu std::vector> medusaLogits; //! [batchSize], on gpu TensorPtr medusaCurTokensPerStep; //! [batchSize], on gpu TensorConstPtr medusaTargetTokensPerStep; }; class ExternalDraftTokensInputs { public: TensorPtr draftLogits; TensorPtr draftLogitsHost; TensorPtr draftProbs; TensorPtr targetProbs; TensorPtr numDraftTokens; TensorPtr numDraftTokensHost; TensorPtr draftTokenIds; TensorPtr draftTokenIdsHost; TensorPtr useDraftLogits; TensorPtr useDraftLogitsHost; SizeType32 step; float constantThreshold; bool useRandomAcceptanceThreshold; }; class ExplicitDraftTokensInputs { public: TensorConstPtr nextDraftTokens; // [batchSize, maxNumPaths, maxPathLen] TensorConstPtr nextFlatTokens; // [batchSize * maxDecodingTokens] TensorConstPtr nextDraftIndices; // [batchSize, maxNumPaths, maxPathLen] TensorConstPtr nextDraftProbs; // [batchSize, maxNumPaths, maxDraftPathLen, vocabSize] TensorConstPtr lastDraftTokens; // [batchSize, maxNumPaths, maxPathLen] TensorConstPtr lastDraftIndices; // [batchSize, maxNumPaths, maxPathLen] TensorConstPtr masks; // [batchSize, maxDecodingTokens, maxDecodingTokens], bool TensorConstPtr packedPositionIds; // [batchSize * maxDecodingTokens] TensorConstPtr bestPathLengths; // [batchSize] TensorConstPtr bestPathIndices; // [batchSize] TensorConstPtr nextGenerationLengths; // [batchSize] TensorConstPtr lastPositionIdsBase; // [batchSize] TensorConstPtr lastGenerationLengths; // [batchSize] TensorConstPtr maxGenLengthDevice; // [1] TensorConstPtr seqSlots; // [batchSize] }; struct LookaheadInputs { TensorPtr tokensPerStep; }; struct EagleInputs { TensorConstPtr nextDraftTokens; // [batchSize, maxDecodingDraftTokens] TensorConstPtr nextDraftLens; // [batchSize] TensorConstPtr nextDraftPaths; // [batchSize, maxDecodingTokens, maxPathLen] TensorConstPtr lastDraftTokens; // [batchSize, maxNumPaths, maxPathLen] TensorConstPtr lastDraftLens; // [batchSize] TensorConstPtr lastDraftPaths; // [batchSize, maxDecodingTokens, maxPathLen] TensorConstPtr acceptedTokens; // [batchSize, maxPathLen] TensorConstPtr acceptedLens; // [batchSize] TensorConstPtr acceptedPathIds; // [batchSize] TensorConstPtr chunkedContextNextTokens; // [batchSize] TensorConstPtr seqSlots; // [batchSize] }; std::optional medusaInputs; std::optional explicitDraftTokensInputs; std::optional lookaheadInputs; std::optional externalDraftTokensInputs; std::optional eagleInputs; }; } // namespace tensorrt_llm::runtime