/* * Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/executor/types.h" #include "tensorrt_llm/runtime/speculativeDecodingModule.h" namespace tensorrt_llm::runtime { class EagleModule : public SpeculativeDecodingModule { public: // Number of paths is maxDecodingTokens = maxDecodingDraftTokens + 1 to account for very flat trees with // depth 1. explicit EagleModule(SizeType32 maxDraftPathLen, SizeType32 maxDecodingDraftTokens, SizeType32 numTransformersLayer, SizeType32 maxNonLeafNodesPerLayer) noexcept : SpeculativeDecodingModule(maxDraftPathLen, maxDecodingDraftTokens, maxDecodingDraftTokens + 1) , mNumTransformersLayer(numTransformersLayer) , mMaxNonLeafNodesPerLayer(maxNonLeafNodesPerLayer) { } explicit EagleModule() noexcept : EagleModule(0, 0, 0, 0) { } [[nodiscard]] executor::EagleChoices const& getDefaultEagleChoices() const noexcept { return mDefaultEagleChoices; } [[nodiscard]] SizeType32 getNumTransformerLayers() const noexcept { return mNumTransformersLayer; } [[nodiscard]] SizeType32 getMaxNonLeafNodesPerLayer() const noexcept { return mMaxNonLeafNodesPerLayer; } private: SizeType32 mNumTransformersLayer; SizeType32 mMaxNonLeafNodesPerLayer; // We use mc_sim_7b_63 from official Medusa implementation, i.e. one of the best trees with 63 nodes found for 7B // Vicuna model. We use it as default, if no other are trees are specified per request or on the server level. executor::EagleChoices mDefaultEagleChoices = {{0}, {0, 0}, {1}, {0, 1}, {2}, {0, 0, 0}, {1, 0}, {0, 2}, {3}, {0, 3}, {4}, {0, 4}, {2, 0}, {0, 5}, {0, 0, 1}, {5}, {0, 6}, {6}, {0, 7}, {0, 1, 0}, {1, 1}, {7}, {0, 8}, {0, 0, 2}, {3, 0}, {0, 9}, {8}, {9}, {1, 0, 0}, {0, 2, 0}, {1, 2}, {0, 0, 3}, {4, 0}, {2, 1}, {0, 0, 4}, {0, 0, 5}, {0, 0, 0, 0}, {0, 1, 1}, {0, 0, 6}, {0, 3, 0}, {5, 0}, {1, 3}, {0, 0, 7}, {0, 0, 8}, {0, 0, 9}, {6, 0}, {0, 4, 0}, {1, 4}, {7, 0}, {0, 1, 2}, {2, 0, 0}, {3, 1}, {2, 2}, {8, 0}, {0, 5, 0}, {1, 5}, {1, 0, 1}, {0, 2, 1}, {9, 0}, {0, 6, 0}, {0, 0, 0, 1}, {1, 6}, {0, 7, 0}}; }; } // namespace tensorrt_llm::runtime