/* * Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/executor/types.h" #include "tensorrt_llm/layers/baseLayer.h" #include "tensorrt_llm/layers/decodingParams.h" #include "tensorrt_llm/runtime/common.h" #include namespace tensorrt_llm::layers { //! \brief Top class for sampling layers. //! It sets up and executes TopKSamplingLayer and TopPSamplingLayer samplings template class SamplingLayer : public BaseLayer { public: using Base = BaseLayer; SamplingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain, std::shared_ptr bufferManager); void setup(runtime::SizeType32 batchSize, runtime::SizeType32 beamWidth, TensorConstPtr batchSlots, std::shared_ptr const& setupParams, std::shared_ptr const& workspace) override; void forwardAsync(std::shared_ptr const& outputs, std::shared_ptr const& inputs, std::shared_ptr const& workspace) override; //! @returns workspace needed for this layer in bytes [[nodiscard]] size_t getWorkspaceSize() const noexcept override; private: using Base::mDecoderDomain; executor::DecodingMode mDecodingMode; size_t mWorkspaceSize{0}; size_t mSetupWorkspaceSize{0}; TensorPtr mCurandStatesDevice; TensorPtr mSkipDecodeDevice; TensorPtr mSkipDecodeHost; bool mSkipAny{false}; bool mOutputLogProbs{false}; bool mCumLogProbs{false}; TensorPtr mRuntimeMinPHost; TensorPtr mRuntimeMinPDevice; bool mUseMinP{false}; std::vector> mSamplingLayers; private: void allocateBuffer(runtime::SizeType32 batchSize); }; } // namespace tensorrt_llm::layers