/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/runtime/loraModule.h" namespace tensorrt_llm::runtime { std::vector LoraModule::createLoraModules(std::vector const& loraModuleNames, SizeType32 hiddenSize, SizeType32 mlpHiddenSize, SizeType32 numAttentionHeads, SizeType32 numKvAttentionHeads, SizeType32 attentionHeadSize, SizeType32 tpSize, SizeType32 numExperts) { auto const hidden = hiddenSize * tpSize; auto const mlpHidden = mlpHiddenSize * tpSize; auto const numHeads = numAttentionHeads * tpSize; auto const numKvHeads = numKvAttentionHeads * tpSize; auto const attnHeadSize = attentionHeadSize; std::vector modules; for (auto const& moduleName : loraModuleNames) { auto const qOutSize = numHeads * attnHeadSize; auto const kvOutSize = numKvHeads * attnHeadSize; auto const t = toModuleType(moduleName); switch (t) { case ModuleType::kATTN_QKV: case ModuleType::kCROSS_ATTN_QKV: modules.emplace_back(t, hidden, (qOutSize + 2 * kvOutSize), false, true, -1, 0); break; case ModuleType::kATTN_Q: case ModuleType::kCROSS_ATTN_Q: modules.emplace_back(t, hidden, qOutSize, false, true, -1, 0); break; case ModuleType::kATTN_K: case ModuleType::kCROSS_ATTN_K: case ModuleType::kATTN_V: case ModuleType::kCROSS_ATTN_V: modules.emplace_back(t, hidden, kvOutSize, false, true, -1, 0); break; case ModuleType::kATTN_DENSE: case ModuleType::kCROSS_ATTN_DENSE: modules.emplace_back(t, hidden, hidden, false, true, 1, -1); break; case ModuleType::kMLP_H_TO_4H: modules.emplace_back(t, hidden, mlpHidden, false, true, -1, 0); break; case ModuleType::kMLP_GATE: modules.emplace_back(t, hidden, mlpHidden, false, true, -1, 0); break; case ModuleType::kMLP_4H_TO_H: modules.emplace_back(t, mlpHidden, hidden, false, true, 1, -1); break; // TODO(TRTLLM-379): Support MOE LoRA weights case ModuleType::kMOE_H_TO_4H: case ModuleType::kMOE_GATE: modules.emplace_back(t, hidden * numExperts, mlpHidden * numExperts, false, true, -1, 0); break; case ModuleType::kMOE_4H_TO_H: modules.emplace_back(t, mlpHidden * numExperts, hidden * numExperts, false, true, 1, -1); break; case ModuleType::kMOE_ROUTER: modules.emplace_back(t, hidden, numExperts, false, true, -1, -1); break; case ModuleType::kMLP_ROUTER: modules.emplace_back(t, hidden, 1, false, true, -1, -1); break; case ModuleType::kMLP_GATE_UP: modules.emplace_back(t, hidden, 2 * mlpHidden, false, true, -1, 0); break; case ModuleType::kINVALID: throw std::runtime_error("Invalid LoRA module " + moduleName); } } return modules; } } // namespace tensorrt_llm::runtime