/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "workerPool.h" #include "tensorrt_llm/common/cudaUtils.h" namespace tensorrt_llm::runtime { WorkerPool::WorkerPool(std::size_t numWorkers, std::int32_t deviceId) { for (std::size_t i = 0; i < numWorkers; ++i) { mWorkers.emplace_back( [this, deviceId] { if (deviceId >= 0) { TLLM_CUDA_CHECK(cudaSetDevice(deviceId)); } else { TLLM_LOG_WARNING("WorkerPool did not set cuda device"); } while (true) { std::function task; { std::unique_lock lock(this->mQueueMutex); this->condition.wait(lock, [this] { return this->stop || !this->mTasks.empty(); }); if (this->stop && this->mTasks.empty()) { return; } task = std::move(this->mTasks.front()); this->mTasks.pop(); } task(); } }); } } WorkerPool::~WorkerPool() { { std::unique_lock lock(mQueueMutex); stop = true; } condition.notify_all(); for (std::thread& worker : mWorkers) { worker.join(); } } } // namespace tensorrt_llm::runtime