/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/runtime/worldConfig.h" #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/common/stringUtils.h" #include "tensorrt_llm/runtime/utils/mpiUtils.h" #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; WorldConfig::WorldConfig(SizeType32 tensorParallelism, SizeType32 pipelineParallelism, SizeType32 contextParallelism, SizeType32 rank, SizeType32 gpusPerNode, std::optional> const& deviceIds, bool enableAttentionDP) : mTensorParallelism{tensorParallelism} , mPipelineParallelism{pipelineParallelism} , mContextParallelism{contextParallelism} , mRank{rank} , mGpusPerNode{gpusPerNode} , mEnableAttentionDP{enableAttentionDP} , mDeviceIds{deviceIds.value_or(std::vector(mGpusPerNode))} { #if ENABLE_MULTI_DEVICE auto const numDevices = mDeviceIds.size(); TLLM_CHECK(numDevices > 0); if (!deviceIds.has_value()) { mDeviceIds.resize(mGpusPerNode); std::iota(mDeviceIds.begin(), mDeviceIds.end(), 0); } else { // total number is at most mGpusPerNode TLLM_CHECK_WITH_INFO(static_cast(numDevices) <= mGpusPerNode, "Number of device IDs %zu is greater than GPUs per node %d", numDevices, mGpusPerNode); // all deviceIds is within the range TLLM_CHECK(*std::max_element(mDeviceIds.begin(), mDeviceIds.end()) < mGpusPerNode); TLLM_CHECK(*std::min_element(mDeviceIds.begin(), mDeviceIds.end()) >= 0); // all ids are unique std::set const deviceIdSet(mDeviceIds.begin(), mDeviceIds.end()); TLLM_CHECK_WITH_INFO( deviceIdSet.size() == numDevices, "Device IDs are not unique %zu != %zu", deviceIdSet.size(), numDevices); // log a warning if device ids are not contiguous if (std::adjacent_find(deviceIdSet.begin(), deviceIdSet.end(), [](auto x, auto y) { return y - x != 1; }) != deviceIdSet.end()) { TLLM_LOG_WARNING("The user specified device IDs are not contiguous!"); } TLLM_LOG_INFO("Using user-specified devices: %s", tc::arr2str(mDeviceIds.data(), numDevices).c_str()); } TLLM_CHECK(mTensorParallelism > 0); TLLM_CHECK(mPipelineParallelism > 0); #else // Overriding to default - single GPU mRank = 0; mGpusPerNode = 1; mTensorParallelism = 1; mPipelineParallelism = 1; #endif } bool WorldConfig::validMpiConfig() const { return COMM_SESSION.getSize() == getSize(); } WorldConfig WorldConfig::mpi(SizeType32 gpusPerNode, std::optional tensorParallelism, std::optional pipelineParallelism, std::optional contextParallelism, std::optional> const& deviceIds, bool enableAttentionDP) { #if ENABLE_MULTI_DEVICE auto& comm = COMM_SESSION; auto const mpiSize = comm.getSize(); auto const mpiRank = comm.getRank(); auto const mpiLocalSize = LOCAL_COMM_SESSION.getSize(); TLLM_LOG_INFO("MPI size: %d, MPI local size: %d, rank: %d", mpiSize, mpiLocalSize, mpiRank); auto const pp = pipelineParallelism.value_or(1); auto const cp = contextParallelism.value_or(1); auto const tp = tensorParallelism.value_or(mpiSize / pp / cp); TLLM_LOG_DEBUG("TP: %d, PP: %d, CP: %d, gpusPerNode: %d", tp, pp, cp, gpusPerNode); TLLM_CHECK_WITH_INFO( mpiSize == tp * pp * cp, "MPI size %d != TP size %d * PP size %d * CP Size %d", mpiSize, tp, pp, cp); SizeType32 deviceCount{0}; TLLM_CUDA_CHECK(cudaGetDeviceCount(&deviceCount)); if (deviceCount < std::min(mpiSize, gpusPerNode)) { TLLM_LOG_WARNING( "gpusPerNode is %d and mpiSize is %d, but only %d GPUs detected, which is smaller than min(mpiSize, " "gpusPerNode). gpusPerNode will be set to %d", gpusPerNode, mpiSize, deviceCount, deviceCount); gpusPerNode = deviceCount; if (std::getenv("CUDA_VISIBLE_DEVICES") != nullptr || std::getenv("NVIDIA_VISIBLE_DEVICES") != nullptr) { std::ostringstream oss; if (std::getenv("CUDA_VISIBLE_DEVICES") != nullptr) { oss << " CUDA_VISIBLE_DEVICES=" << std::getenv("CUDA_VISIBLE_DEVICES"); } if (std::getenv("NVIDIA_VISIBLE_DEVICES") != nullptr) { oss << " NVIDIA_VISIBLE_DEVICES=" << std::getenv("NVIDIA_VISIBLE_DEVICES"); } std::string envStr = oss.str(); TLLM_LOG_WARNING( "Detect%s, please provide the full device list instead of limiting to device list, " "otherwise allreduce performance may be sub-optimal " "since custom allreduce kernel relies on P2P access to peer devices.", envStr.c_str()); } } return WorldConfig{tp, pp, cp, mpiRank, gpusPerNode, deviceIds, enableAttentionDP}; #else return WorldConfig(); #endif } std::vector WorldConfig::getPipelineParallelGroup() const { // Layout: pp is outermost, then tp, then cp is innermost (consecutive). // rank = ppRank * (tp * cp) + tpRank * cp + cpRank // PP group: all ranks with same (tpRank, cpRank) but different ppRank. auto const pp = getPipelineParallelism(); auto const tp = getTensorParallelism(); auto const cp = getContextParallelism(); auto const worldSize = getSize(); std::vector group; group.reserve(pp); for (SizeType32 idx = getTensorParallelRank() * cp + getContextParallelRank(); idx < worldSize; idx += tp * cp) { group.push_back(idx); } return group; } std::vector WorldConfig::getTensorParallelGroup() const { // Layout: pp is outermost, then tp, then cp is innermost (consecutive). // rank = ppRank * (tp * cp) + tpRank * cp + cpRank // TP group: all ranks with same (ppRank, cpRank) but different tpRank. auto const tp = getTensorParallelism(); auto const cp = getContextParallelism(); auto const rank = getRank(); auto const tpRank = getTensorParallelRank(); std::vector group; group.reserve(tp); for (SizeType32 idx = 0; idx < tp; idx++) { group.push_back(rank - tpRank * cp + idx * cp); } return group; } std::vector WorldConfig::getContextParallelGroup() const { // Layout: pp is outermost, then tp, then cp is innermost (consecutive). // rank = ppRank * (tp * cp) + tpRank * cp + cpRank // CP group: all ranks with same (ppRank, tpRank) but different cpRank. auto const cp = getContextParallelism(); auto const rank = getRank(); auto const cpRank = getContextParallelRank(); std::vector group; group.reserve(cp); for (SizeType32 idx = 0; idx < cp; idx++) { group.push_back(rank - cpRank + idx); } return group; }