### :section Basics ### :title Generate text asynchronously ### :order 1 import asyncio from tensorrt_llm import LLM, SamplingParams def main(): # model could accept HF model name or a path to local HF model. llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0") # Sample prompts. prompts = [ "Hello, my name is", "The capital of France is", "The future of AI is", ] # Create a sampling params. sampling_params = SamplingParams(temperature=0.8, top_p=0.95) # Async based on Python coroutines async def task(prompt: str): output = await llm.generate_async(prompt, sampling_params) print( f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}" ) async def main(): tasks = [task(prompt) for prompt in prompts] await asyncio.gather(*tasks) asyncio.run(main()) # Got output like follows: # Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming' # Prompt: 'The capital of France is', Generated text: 'Paris.' # Prompt: 'The future of AI is', Generated text: 'an exciting time for us. We are constantly researching, developing, and improving our platform to create the most advanced and efficient model available. We are' if __name__ == '__main__': main()