# LongBench Evaluation with TensorRT-LLM and Sparse Attention This directory contains evaluation scripts for LongBench v1 datasets using TensorRT-LLM backend. > **Note**: LongBench v2 evaluation has been integrated into `trtllm-eval`. Please refer to `tensorrt_llm/evaluate/longbench_v2.py` for details. ## Environment Setup ### 1. Clone LongBench Repository First, clone the LongBench repository which contains the datasets and evaluation utilities: ```bash git clone https://github.com/THUDM/LongBench.git ``` ### 2. Install Requirements Install the required dependencies: ```bash pip install -r requirements.txt ``` ### 3. Directory Structure After cloning, your directory structure should look like: ```text sparse_attention/ ├── eval_longbench_v1.py # LongBench v1 evaluation script ├── README.md # This file └── LongBench/ # Cloned LongBench repository ├── LongBench/ # LongBench v1 data and configs │ ├── config/ │ └── ... ├── ... └── requirements.txt ``` ## Scripts Overview The script `eval_longbench_v1.py` evaluates models on the **LongBench v1** dataset, which includes multiple specific tasks like narrativeqa, qasper, multifieldqa, etc. Key features: - **Dataset**: LongBench v1 with task-specific evaluation - **Tasks**: Support for 20+ different long-context tasks - **Prompts**: Task-specific prompts from LongBench v1 configuration - **Metrics**: Task-specific metrics (F1, ROUGE, classification scores, etc.) - **Output**: Task-level results with comprehensive summary statistics ## Usage Examples ### Basic Usage (Standard Attention) ```bash python eval_longbench_v1.py \ --model_path "/path/to/your/model" \ --longbench_path ./LongBench \ --output_dir results/v1_vanilla \ --attention_backend VANILLA \ --backend pytorch ``` ### Specific tasks With Sparse Attention (RocketKV) ```bash python eval_longbench_v1.py \ --model_path "/path/to/your/model" \ --longbench_path ./LongBench \ --dataset narrativeqa qasper \ --output_dir results/v1_rocket \ --attention_backend VANILLA \ --backend pytorch \ --rocket_sparse ``` ## Output Structure ```text results/v1_experiment/ ├── config.json # Experiment configuration ├── overall_summary.json # Overall experiment summary ├── narrativeqa/ │ ├── narrativeqa_results.jsonl # Detailed results │ ├── narrativeqa_summary.json # Task summary │ └── pred/ │ └── narrativeqa.jsonl # Predictions in LongBench format ├── qasper/ │ └── ... └── ... ```