# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import random from abc import ABC, abstractmethod from typing import Any, Iterable, List, Optional, Union import numpy as np import torch from tqdm import tqdm import tensorrt_llm.profiler as profiler from ..llmapi import RequestOutput from ..logger import logger from ..sampling_params import SamplingParams class Evaluator(ABC): def __init__(self, random_seed: int = 0, apply_chat_template: bool = False, fewshot_as_multiturn: bool = False, system_prompt: Optional[str] = None, chat_template_kwargs: Optional[dict[str, Any]] = None): random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) self.apply_chat_template = apply_chat_template self.fewshot_as_multiturn = fewshot_as_multiturn self.system_prompt = system_prompt self.chat_template_kwargs = chat_template_kwargs @abstractmethod def generate_samples(self) -> Iterable[tuple]: raise NotImplementedError() @abstractmethod def compute_score(self, outputs: List[RequestOutput], references: List[str], *auxiliaries) -> float: raise NotImplementedError() def do_apply_chat_template(self, llm: Any, prompt: Union[str, List[dict]]) -> str: if isinstance(prompt, str): messages = [{"role": "user", "content": prompt}] else: messages = prompt if self.system_prompt is not None: messages = [{ "role": "system", "content": self.system_prompt }] + messages return llm.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, **(self.chat_template_kwargs or {})) def _get_sampline_params(self, sampling_params: Optional[SamplingParams], sampling_args: Optional[dict]) -> SamplingParams: if sampling_params is None: sampling_params = SamplingParams() else: sampling_params = copy.deepcopy(sampling_params) if sampling_args is not None: for key, value in sampling_args.items(): setattr(sampling_params, key, value) return sampling_params def evaluate(self, llm: Any, sampling_params: Optional[SamplingParams] = None, streaming: bool = False) -> float: profiler.start("trtllm exec") outputs, references, auxiliaries = [], [], [] for prompt, sampling_args, reference, *aux in tqdm( self.generate_samples(), desc="Submitting requests"): if self.apply_chat_template: prompt = self.do_apply_chat_template(llm, prompt) sampling_params = self._get_sampline_params(sampling_params, sampling_args) output = llm.generate_async( prompt, sampling_params, streaming=streaming, ) outputs.append(output) references.append(reference) auxiliaries.append(aux) results = [] for output in tqdm(outputs, desc="Fetching responses"): results.append(output.result()) profiler.stop("trtllm exec") elapsed_time = profiler.elapsed_time_in_sec("trtllm exec") logger.info(f"TRTLLM execution time: {elapsed_time:.3f} seconds.") profiler.reset("trtllm exec") score = self.compute_score(results, references, *zip(*auxiliaries)) return score @staticmethod def command(ctx, *args, **kwargs) -> None: raise NotImplementedError()