import logging as _log import os as _os import pathlib as _pl import subprocess as _sp import sys as _sys import typing as _tp import numpy as _np def run_command(command: _tp.Sequence[str], cwd: _pl.Path, *, shell=False, env=None) -> None: _log.info("Running: cd %s && %s", str(cwd), " ".join(command)) _sp.check_call(command, cwd=cwd, shell=shell, env=env) def prepare_model_tests( llm_root: _pl.Path, resource_path: _pl.Path, model_name: str, model_cache_arg=[], ): scripts_dir = resource_path / "scripts" python_exe = _sys.executable model_env = {**_os.environ, "PYTHONPATH": f"examples/{model_name}"} build_engines = [ python_exe, str(scripts_dir / f"build_{model_name}_engines.py") ] + model_cache_arg run_command(build_engines, cwd=llm_root, env=model_env) model_env["PYTHONPATH"] = "examples" generate_expected_output = [ python_exe, str(scripts_dir / f"generate_expected_{model_name}_output.py") ] run_command(generate_expected_output, cwd=llm_root, env=model_env) def prepare_lora_configs(llm_root: _pl.Path, resource_path: _pl.Path, lora_config_path: _pl.Path): python_exe = _sys.executable generate_lora_data_args_tp1 = [ python_exe, str(resource_path / "scripts" / "generate_test_lora_weights.py"), f"--out-dir={str(lora_config_path)}", "--tp-size=1", "--hidden-size=768", "--num-layers=12", "--config-ids-filter=0", "--no-generate-cache-pages" ] run_command(generate_lora_data_args_tp1, cwd=llm_root) def sequence_lengths(sequences: _np.ndarray, pad_id: int) -> _np.ndarray: return _np.apply_along_axis(lambda x: _np.searchsorted(x, True), 1, sequences == pad_id).astype("int32")