# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import torch from parameterized import parameterized import tensorrt_llm sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func class TestTopK(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([ ((3, 5), 1, 1, True), ((3, 4, 6), 2, 0, True), ((3, 5), 1, 1, False), ((3, 4, 6), 2, 0, False), ], name_func=unittest_name_func) def test_topk(self, input_shape, k, d, largest): value_dtype = 'float32' indices_dtype = 'int32' # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() input_data = torch.rand(*input_shape, dtype=torch.float32, device="cuda") with tensorrt_llm.net_guard(network): m = tensorrt_llm.functional.constant(input_data.cpu().numpy()) topk_values, topk_indices = tensorrt_llm.functional.topk( m, k, d, largest=largest) topk_values.mark_output('output_values', value_dtype) topk_indices.mark_output('topk_indices', indices_dtype) # trt run session = create_session(builder, network) inputs = {} outputs = run_session(session, inputs) # pytorch run values, indices = torch.topk(input_data, k, dim=d, largest=largest) # compare diff torch.testing.assert_close(values, outputs['output_values']) # dtype does not match torch.testing.assert_close(indices.int(), outputs['topk_indices'].int())