/* * Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/kernels/sparseAttentionKernels.h" #include namespace tensorrt_llm { namespace kernels { template __global__ void gatherKvPageOffsetsKernel( int32_t* output_kv_page_offsets, // [num_head_kv, batch_size, 2, max_num_pages_per_seq] int32_t* output_seq_lengths, // [num_head_kv, batch_size] int32_t const* kv_page_offsets, // [batch_size, 2, max_num_pages_per_seq] int32_t const* seq_lengths, // [batch_size] SparseAttentionParams const sparse_params, int32_t const batch_size, int32_t const tokens_per_page, int32_t const max_num_pages_per_seq) { // Each CUDA block processes one sequence from the batch for one head. int32_t const head_idx = blockIdx.x; int32_t const batch_idx = blockIdx.y; int32_t const indices_block_size = sparse_params.sparse_attn_indices_block_size; if (batch_idx >= batch_size) { return; } using BlockScan = cub::BlockScan; using BlockReduce = cub::BlockReduce; __shared__ typename BlockScan::TempStorage temp_storage_scan; __shared__ typename BlockReduce::TempStorage temp_storage_reduce; __shared__ int32_t s_page_mask[MAX_NUM_PAGES]; __shared__ int32_t s_cu_page_mask[MAX_NUM_PAGES]; __shared__ int32_t s_scan_total; // Store total count from scan // Get the range of sparse indices and the sequence length. int32_t const start_offset = sparse_params.sparse_attn_offsets[batch_idx]; int32_t const end_offset = sparse_params.sparse_attn_offsets[batch_idx + 1]; int32_t const sparse_attn_indices_stride = sparse_params.sparse_attn_indices_stride; int32_t const num_sparse_indices = end_offset - start_offset; int32_t const original_seq_len = seq_lengths[batch_idx]; int32_t const ori_valid_pages = (original_seq_len + tokens_per_page - 1) / tokens_per_page; int32_t const page_loops = (ori_valid_pages + MAX_NUM_PAGES - 1) / MAX_NUM_PAGES; // Get global sparse index. int32_t const sparse_idx_global = head_idx * sparse_attn_indices_stride + start_offset; // Get the base memory offset. shape: [batch_size, 2, max_num_pages_per_seq] size_t const src_base_offset = (size_t) batch_idx * 2 * max_num_pages_per_seq; size_t const dst_base_offset = (size_t) head_idx * batch_size * 2 * max_num_pages_per_seq + src_base_offset; // Initialize the local max page index and number of valid pages. int32_t local_max_page_index = -1; int32_t local_num_valid_pages = 0; int32_t src_page_idx_offset = 0; int32_t dst_page_idx_offset = 0; for (int32_t loop_idx = 0; loop_idx < page_loops; loop_idx++) { src_page_idx_offset = loop_idx * MAX_NUM_PAGES; int32_t loop_num_valid_pages = min(MAX_NUM_PAGES, ori_valid_pages - src_page_idx_offset); for (int32_t i = threadIdx.x; i < MAX_NUM_PAGES; i += blockDim.x) { s_page_mask[i] = 0; } __syncthreads(); for (int32_t i = threadIdx.x; i < num_sparse_indices; i += blockDim.x) { int32_t const src_idx = sparse_params.sparse_attn_indices[sparse_idx_global + i]; int32_t const src_idx_start = src_idx * indices_block_size; int32_t const src_idx_end = min(src_idx_start + indices_block_size, original_seq_len); for (int32_t j = src_idx_start; j < src_idx_end; j++) { int32_t const src_page_idx = j / tokens_per_page; if (src_page_idx >= src_page_idx_offset && src_page_idx < src_page_idx_offset + loop_num_valid_pages) { atomicExch(&s_page_mask[src_page_idx - src_page_idx_offset], 1); } } } __syncthreads(); // Handle case when loop_num_valid_pages > blockDim.x by processing in chunks int32_t scan_offset = 0; int32_t const scan_chunks = (loop_num_valid_pages + blockDim.x - 1) / blockDim.x; for (int32_t chunk_idx = 0; chunk_idx < scan_chunks; chunk_idx++) { int32_t const chunk_start = chunk_idx * blockDim.x; int32_t const chunk_size = min((int32_t) blockDim.x, loop_num_valid_pages - chunk_start); int32_t thread_data = (threadIdx.x < chunk_size) ? s_page_mask[chunk_start + threadIdx.x] : 0; int32_t thread_output; int32_t aggregate; BlockScan(temp_storage_scan).ExclusiveSum(thread_data, thread_output, aggregate); __syncthreads(); if (threadIdx.x < chunk_size) { s_cu_page_mask[chunk_start + threadIdx.x] = thread_output + scan_offset; } __syncthreads(); // Update scan offset for next chunk scan_offset += aggregate; } if (threadIdx.x == 0) { s_scan_total = scan_offset; } __syncthreads(); // Perform the gather operation. for (int32_t i = threadIdx.x; i < loop_num_valid_pages; i += blockDim.x) { // Skip if the page is not valid. if (s_page_mask[i] == 0) { continue; } int32_t const src_idx = src_page_idx_offset + i; int32_t const dst_idx = dst_page_idx_offset + s_cu_page_mask[i]; local_max_page_index = max(local_max_page_index, src_idx); local_num_valid_pages++; size_t const src_offset_dim0 = src_base_offset + 0 * max_num_pages_per_seq + src_idx; size_t const src_offset_dim1 = src_base_offset + 1 * max_num_pages_per_seq + src_idx; size_t const dst_offset_dim0 = dst_base_offset + 0 * max_num_pages_per_seq + dst_idx; size_t const dst_offset_dim1 = dst_base_offset + 1 * max_num_pages_per_seq + dst_idx; output_kv_page_offsets[dst_offset_dim0] = kv_page_offsets[src_offset_dim0]; output_kv_page_offsets[dst_offset_dim1] = kv_page_offsets[src_offset_dim1]; } __syncthreads(); // Update dst offset using the total count from scan dst_page_idx_offset += s_scan_total; } // Reduce the local max page indices and number of valid pages. Pair local_pair = {local_max_page_index, local_num_valid_pages}; Pair result = BlockReduce(temp_storage_reduce).Reduce(local_pair, PairReduceOp()); // Update sequence length for this head and batch. if (threadIdx.x == 0) { int32_t const max_page_index = result.max_val; int32_t const num_valid_pages = result.sum_val; size_t const seq_len_offset = (size_t) head_idx * batch_size + batch_idx; int32_t seq_len = 0; if (num_valid_pages > 0) { if (max_page_index == ori_valid_pages - 1) { seq_len = (num_valid_pages - 1) * tokens_per_page + (original_seq_len - (ori_valid_pages - 1) * tokens_per_page); } else { seq_len = num_valid_pages * tokens_per_page; } } output_seq_lengths[seq_len_offset] = seq_len; } } // Host-side launcher function void invokeGatherKvPageOffsets(int32_t* output_kv_page_offsets, int32_t* output_seq_lengths, int32_t const* kv_page_offsets, int32_t const* seq_lengths, SparseAttentionParams const sparse_params, int32_t const batch_size, int32_t const num_head_kv, int32_t const tokens_per_page, int32_t const max_num_pages_per_seq, cudaStream_t stream) { // The grid. dim3 grid(num_head_kv, batch_size, 1); // The block. dim3 block(256, 1, 1); gatherKvPageOffsetsKernel<256, 512><<>>(output_kv_page_offsets, output_seq_lengths, kv_page_offsets, seq_lengths, sparse_params, batch_size, tokens_per_page, max_num_pages_per_seq); } } // namespace kernels } // namespace tensorrt_llm