# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Sequence import torch from tensorrt_llm import PluginBase from tensorrt_llm._utils import TensorWrapper, convert_to_torch_tensor from tensorrt_llm.python_plugin import SymTensor, trtllm_plugin from .lookup_kernel import lookup_kernel @trtllm_plugin("TritonLookUp") class LookUpPlugin(PluginBase): def __init__(self, use_torch_tensor, fp32_output): super().__init__() self.use_torch_tensor = use_torch_tensor self.fp32_output = fp32_output def shape_dtype_inference(self, inputs: Sequence[SymTensor]) -> SymTensor: shape = inputs[1].shape shape[0] = inputs[0].shape[0] + inputs[1].shape[0] - inputs[1].shape[0] return SymTensor( inputs[1].dtype if not self.fp32_output else torch.float32, shape) def forward(self, inputs: Sequence[TensorWrapper], outputs: Sequence[TensorWrapper]): assert len(inputs) == 2 assert inputs[0].dtype in [torch.int32 or torch.int64] assert inputs[1].dtype in [torch.float32, torch.float16, torch.bfloat16] assert (self.fp32_output and outputs[0].dtype == torch.float32) or outputs[0].dtype == inputs[1].dtype x = inputs[0] y = inputs[1] z = outputs[0] if self.use_torch_tensor: x = convert_to_torch_tensor(x) y = convert_to_torch_tensor(y) z = convert_to_torch_tensor(z) MAX_BLOCK_NUM = 65536 MAX_BLOCK_SIZE = 512 grid = lambda meta: (min(MAX_BLOCK_NUM, x.shape[0]) * min( MAX_BLOCK_SIZE, y.shape[1]), ) lookup_kernel[grid](x, y, z, y.shape[0], y.shape[1], x.shape[0])