#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import pathlib as _pl import shutil as _shutil import subprocess as _sp import sys import typing as _tp from pathlib import Path as _Path import torch.multiprocessing as _mp resources_dir = _pl.Path( __file__).parent.parent.parent.parent.parent / "examples/chatglm" sys.path.insert(0, str(resources_dir)) engine_target_path = _pl.Path(__file__).parent.parent / "models/rt_engine" import build as _ecb def build_engine(model_name: str, weight_dir: _pl.Path, engine_dir: _pl.Path, world_size, *args): args = [ '-m', str(model_name), '--log_level=error', '--model_dir', str(weight_dir), '--output_dir', str(engine_dir), '--max_batch_size=2', '--max_beam_width=2', "--max_input_len=512", "--max_output_len=512", '--builder_opt=0', f'--world_size={world_size}', ] + list(args) print("Running: " + " ".join(args)) _ecb.run_build(args) def run_command(command: _tp.Sequence[str], *, cwd=None, **kwargs) -> None: command = [str(i) for i in command] print(f"Running: cd %s && %s" % (str(cwd or _pl.Path.cwd()), " ".join(command))) _sp.check_call(command, cwd=cwd, **kwargs) def build_engines(model_cache: _tp.Optional[str] = None, world_size: int = 1): model_name_list = ["chatglm_6b", "chatglm2_6b", "chatglm3_6b"] hf_dir_list = [resources_dir / model_name for model_name in model_name_list] trt_dir_list = [ resources_dir / ("output_" + model_name) for model_name in model_name_list ] run_command( ["pip", "install", "-r", str(resources_dir) + "/requirements.txt"], cwd=resources_dir) # Clone the model directory for model_name, hf_dir in zip(model_name_list, hf_dir_list): if not _Path(hf_dir).exists(): run_command( [ "git", "clone", "https://huggingface.co/THUDM/" + model_name.replace("_", "-"), model_name, ], cwd=resources_dir, ) print("\nBuilding engines") for model_name, hf_dir, trt_dir in zip(model_name_list, hf_dir_list, trt_dir_list): print("Building %s" % model_name) build_engine(model_name, hf_dir, trt_dir, world_size) if not _Path(engine_target_path).exists(): _Path(engine_target_path).mkdir(parents=True, exist_ok=True) for model_name in model_name_list: _shutil.move( _Path(resources_dir) / ("output_" + model_name), engine_target_path / model_name) print("Done.") if __name__ == "__main__": parser = _arg.ArgumentParser() parser.add_argument("--model_cache", type=str, help="Directory where models are stored") parser.add_argument('--world_size', type=int, default=1, help='world size, only support tensor parallelism now') _mp.set_start_method("spawn") build_engines(**vars(parser.parse_args()))