Source code for tensorrt_llm.models.opt.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ..._utils import pad_vocab_size
from ...functional import Tensor
from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear,
                       LayerNorm, PositionEmbeddingType)
from ...module import Module
from ..gpt.model import GPTEmbedding
from ..modeling_utils import DecoderLayerList, DecoderModelForCausalLM


class OPTDecoderLayer(Module):

    def __init__(self, config, layer_idx):
        super().__init__()
        self.layer_idx = layer_idx
        self.config = config
        self.do_layer_norm_before = self.config.do_layer_norm_before

        hidden_size = config.hidden_size
        dtype = config.dtype
        tp_group = config.mapping.tp_group
        tp_size = config.mapping.tp_size

        self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
                                         dtype=dtype)

        self.attention = Attention(
            hidden_size,
            config.num_attention_heads,
            max_position_embeddings=config.max_position_embeddings,
            attention_mask_type=AttentionMaskType.causal,
            dtype=dtype,
            tp_group=tp_group,
            tp_size=tp_size)

        mlp_hidden_size = hidden_size * 4 if config.intermediate_size is None else config.intermediate_size

        self.mlp = MLP(hidden_size=hidden_size,
                       ffn_hidden_size=mlp_hidden_size,
                       hidden_act=config.hidden_act,
                       dtype=dtype,
                       tp_group=tp_group,
                       tp_size=tp_size)
        self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
                                        dtype=dtype)

    def forward(self,
                hidden_states: Tensor,
                attention_mask=None,
                use_cache=False,
                kv_cache_params=None,
                attention_params=None):
        residual = hidden_states

        attention_input = hidden_states
        if self.do_layer_norm_before:
            attention_input = self.input_layernorm(hidden_states)

        # At this point the hidden_states object must be a Tensor.
        assert isinstance(attention_input, Tensor)

        attention_output = self.attention(attention_input,
                                          attention_mask=attention_mask,
                                          use_cache=use_cache,
                                          kv_cache_params=kv_cache_params,
                                          attention_params=attention_params)
        if use_cache:
            attention_output, presents = attention_output

        hidden_states = residual + attention_output
        if not self.do_layer_norm_before:
            hidden_states = self.input_layernorm(hidden_states)

        residual = hidden_states
        if self.do_layer_norm_before:
            hidden_states = self.post_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states)

        hidden_states = residual + hidden_states

        if not self.do_layer_norm_before:
            hidden_states = self.post_layernorm(hidden_states)

        if use_cache:
            return (hidden_states, presents)
        return hidden_states


[docs] class OPTModel(Module): def __init__(self, config): super().__init__() self.do_layer_norm_before = config.do_layer_norm_before use_parallel_embedding = config.use_parallel_embedding embedding_sharding_dim = config.embedding_sharding_dim use_prompt_tuning = config.use_prompt_tuning mapping = config.mapping self.embedding = GPTEmbedding( config.vocab_size, config.hidden_size, config.max_position_embeddings, position_embedding_type=PositionEmbeddingType.learned_absolute, dtype=config.dtype, use_prompt_tuning=use_prompt_tuning, tensor_parallel=mapping.tp_size if use_parallel_embedding else 1, tensor_parallel_group=mapping.tp_group if use_parallel_embedding else None, sharding_dim=embedding_sharding_dim, tp_rank=mapping.tp_rank) self.layers = DecoderLayerList(OPTDecoderLayer, config) if self.do_layer_norm_before: self.ln_f = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype)
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None): hidden_states = self.embedding(input_ids, position_ids, prompt_embedding_table, prompt_tasks, prompt_vocab_size) hidden_states = self.layers(hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params) if use_cache: hidden_states, presents = hidden_states if self.do_layer_norm_before: hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class OPTForCausalLM(DecoderModelForCausalLM): def __init__(self, config): use_parallel_embedding = config.use_parallel_embedding embedding_sharding_dim = config.embedding_sharding_dim share_embedding_table = config.share_embedding_table mapping = config.mapping if share_embedding_table and mapping.tp_size > 1: if (not use_parallel_embedding) or (use_parallel_embedding and embedding_sharding_dim == 1): raise NotImplementedError( 'For multiple-processes cases, sharing the embedding table must set use_parallel_embedding=True and embedding_sharding_dim=0' ) transformer = OPTModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) share_weight = None if share_embedding_table: share_weight = transformer.embedding.vocab_embedding.weight lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=mapping.tp_group, tp_size=mapping.tp_size, gather_output=True, share_weight=share_weight) super().__init__(config, transformer, lm_head)
[docs] def check_config(self): self.config.set_if_not_exist('use_parallel_embedding', False) self.config.set_if_not_exist('embedding_sharding_dim', 0) self.config.set_if_not_exist('share_embedding_table', False) self.config.set_if_not_exist('do_layer_norm_before', False)