# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration tests: VBench dimension scores for WAN and LTX-2 (TRT-LLM vs diffusers reference).""" import glob import json import os import pytest from defs.common import venv_check_call from defs.conftest import llm_models_root from defs.trt_test_alternative import check_call WAN_T2V_MODEL_SUBPATH = "Wan2.1-T2V-1.3B-Diffusers" VISUAL_GEN_OUTPUT_VIDEO = "trtllm_output.mp4" DIFFUSERS_REFERENCE_VIDEO = "diffusers_reference.mp4" WAN_T2V_PROMPT = "A cute cat playing piano" WAN_T2V_HEIGHT = 480 WAN_T2V_WIDTH = 832 WAN_T2V_NUM_FRAMES = 165 # Dimensions to evaluate VBENCH_DIMENSIONS = [ "subject_consistency", "background_consistency", "motion_smoothness", "dynamic_degree", "aesthetic_quality", "imaging_quality", ] # Golden VBench scores from HF reference video (WAN); TRT-LLM is compared against these. VBENCH_WAN_GOLDEN_SCORES = { "subject_consistency": 0.9381, "background_consistency": 0.9535, "motion_smoothness": 0.9923, "dynamic_degree": 1.0000, "aesthetic_quality": 0.5033, "imaging_quality": 0.3033, } VBENCH_REPO = "https://github.com/Vchitect/VBench.git" VBENCH_BRANCH = "master" # Pin to a fixed commit for reproducible runs VBENCH_COMMIT = "98b19513678e99c80d8377fda25ba53b81a491a6" @pytest.fixture(scope="session") def vbench_repo_root(llm_venv): """Clone VBench repo into workspace and install; return repo root path.""" workspace = llm_venv.get_working_directory() repo_path = os.path.join(workspace, "VBench_repo") if os.path.exists(repo_path): return repo_path # Clone without --depth=1 so we can checkout a specific commit check_call( ["git", "clone", "--single-branch", "--branch", VBENCH_BRANCH, VBENCH_REPO, repo_path], shell=False, ) check_call(["git", "-C", repo_path, "checkout", VBENCH_COMMIT], shell=False) # # Install VBench dependencies explicitly # llm_venv.run_cmd([ # "-m", "pip", "install", # "tqdm>=4.60.0", # "openai-clip>=1.0", # "pyiqa>=0.1.0", # install this might also install transformers=4.37.2, which is incompatible # "easydict", # "decord>=0.6.0", # ]) return repo_path @pytest.fixture(scope="session") def wan_trtllm_video_path(llm_venv, llm_root): """Generate input video via visual_gen_wan_t2v.py and return path to trtllm_output.mp4.""" scratch_space = llm_models_root() model_path = os.path.join(scratch_space, WAN_T2V_MODEL_SUBPATH) if not os.path.isdir(model_path): pytest.skip( f"Wan T2V model not found: {model_path} " f"(set LLM_MODELS_ROOT or place {WAN_T2V_MODEL_SUBPATH} under scratch)" ) out_dir = os.path.join(llm_venv.get_working_directory(), "visual_gen_output") os.makedirs(out_dir, exist_ok=True) output_path = os.path.join(out_dir, VISUAL_GEN_OUTPUT_VIDEO) if os.path.isfile(output_path): return output_path # Install av and diffusers from main branch llm_venv.run_cmd(["-m", "pip", "install", "av"]) llm_venv.run_cmd( [ "-m", "pip", "install", "git+https://github.com/huggingface/diffusers.git", ] ) script_path = os.path.join(llm_root, "examples", "visual_gen", "visual_gen_wan_t2v.py") assert os.path.isfile(script_path), f"Visual gen script not found: {script_path}" venv_check_call( llm_venv, [ script_path, "--height", str(WAN_T2V_HEIGHT), "--width", str(WAN_T2V_WIDTH), "--num_frames", str(WAN_T2V_NUM_FRAMES), "--model_path", model_path, "--prompt", WAN_T2V_PROMPT, "--output_path", output_path, ], ) assert os.path.isfile(output_path), f"Visual gen did not produce {output_path}" return output_path @pytest.fixture(scope="session") def wan_reference_video_path(llm_venv, llm_root): """Generate reference video via diffusers (hf_wan.py) using the same model checkpoint.""" scratch_space = llm_models_root() model_path = os.path.join(scratch_space, WAN_T2V_MODEL_SUBPATH) if not os.path.isdir(model_path): pytest.skip( f"Wan T2V model not found: {model_path} " f"(set LLM_MODELS_ROOT or place {WAN_T2V_MODEL_SUBPATH} under scratch)" ) out_dir = os.path.join(llm_venv.get_working_directory(), "visual_gen_output") os.makedirs(out_dir, exist_ok=True) reference_path = os.path.join(out_dir, DIFFUSERS_REFERENCE_VIDEO) if os.path.isfile(reference_path): return reference_path hf_script = os.path.join(llm_root, "examples", "visual_gen", "hf_wan.py") assert os.path.isfile(hf_script), f"Diffusers script not found: {hf_script}" venv_check_call( llm_venv, [ hf_script, "--model_path", model_path, "--prompt", WAN_T2V_PROMPT, "--output_path", reference_path, "--height", str(WAN_T2V_HEIGHT), "--width", str(WAN_T2V_WIDTH), "--num_frames", str(WAN_T2V_NUM_FRAMES), ], ) assert os.path.isfile(reference_path), f"Diffusers did not produce {reference_path}" return reference_path def _visual_gen_out_dir(llm_venv, subdir=""): """Output directory for generated media; subdir e.g. 'ltx2' for model-specific outputs.""" base = os.path.join(llm_venv.get_working_directory(), "visual_gen_output") return os.path.join(base, subdir) if subdir else base def _normalize_score(val): """Normalize to 0-1 scale (e.g. imaging_quality can be 0-100).""" if isinstance(val, bool): return float(val) if isinstance(val, (int, float)) and val > 1.5: return val / 100.0 return float(val) def _get_per_video_scores(results, video_path_substr): """From VBench results, get per-dimension score for the video whose path contains video_path_substr.""" scores = {} for dim in VBENCH_DIMENSIONS: dim_result = results[dim] assert isinstance(dim_result, list) and len(dim_result) >= 2, ( f"Dimension '{dim}' result must be [overall_score, video_results]; got {type(dim_result)}" ) video_results = dim_result[1] for entry in video_results: if video_path_substr in entry.get("video_path", ""): raw = entry.get("video_results") scores[dim] = _normalize_score(raw) break else: raise AssertionError( f"No video matching '{video_path_substr}' in dimension '{dim}'; " f"paths: {[e.get('video_path') for e in video_results]}" ) return scores def _run_vbench_and_compare_to_golden( vbench_repo_root, videos_dir, trtllm_filename, golden_scores, llm_venv, title, max_score_diff=0.1, ): """Run VBench on videos_dir (TRT-LLM output only), compare to golden HF reference scores.""" output_path = os.path.join( llm_venv.get_working_directory(), "vbench_eval_output", title.replace(" ", "_").lower() ) os.makedirs(output_path, exist_ok=True) evaluate_script = os.path.join(vbench_repo_root, "evaluate.py") cmd = [ evaluate_script, "--videos_path", videos_dir, "--output_path", output_path, "--mode", "custom_input", ] cmd.extend(["--dimension"] + VBENCH_DIMENSIONS) venv_check_call(llm_venv, cmd) pattern = os.path.join(output_path, "*_eval_results.json") result_files = glob.glob(pattern) assert result_files, ( f"No eval results found matching {pattern}; output dir: {os.listdir(output_path)}" ) with open(result_files[0], "r") as f: results = json.load(f) for dim in VBENCH_DIMENSIONS: assert dim in results, ( f"Expected dimension '{dim}' in results; keys: {list(results.keys())}" ) scores_trtllm = _get_per_video_scores(results, trtllm_filename) scores_ref = golden_scores max_len = max(len(d) for d in VBENCH_DIMENSIONS) header = f"{'Dimension':<{max_len}} | {'TRT-LLM':>10} | {'HF Ref':>10} | {'Diff':>8}" sep = "-" * len(header) print("\n" + "=" * len(header)) print(f"VBench dimension scores ({title}): TRT-LLM vs golden HF reference scores") print("=" * len(header)) print(header) print(sep) max_diff_val = 0.0 for dim in VBENCH_DIMENSIONS: t, r = scores_trtllm[dim], scores_ref[dim] diff = abs(t - r) max_diff_val = max(max_diff_val, diff) print(f"{dim:<{max_len}} | {t:>10.4f} | {r:>10.4f} | {diff:>8.4f}") print(sep) print( f"{' (all dimensions)':<{max_len}} | (TRT-LLM) | (golden) | max_diff={max_diff_val:.4f}" ) print("=" * len(header) + "\n") for dim in VBENCH_DIMENSIONS: diff = abs(scores_trtllm[dim] - scores_ref[dim]) assert diff < max_score_diff or scores_trtllm[dim] >= scores_ref[dim], ( f"Dimension '{dim}' score difference {diff:.4f} >= {max_score_diff} " f"(TRT-LLM={scores_trtllm[dim]:.4f}, golden={scores_ref[dim]:.4f})" ) def test_vbench_dimension_score_wan(vbench_repo_root, wan_trtllm_video_path, llm_venv): """Run VBench on WAN TRT-LLM video; compare to golden HF reference scores (diff < 0.05 or TRT-LLM >= golden).""" videos_dir = os.path.dirname(wan_trtllm_video_path) assert os.path.isfile(wan_trtllm_video_path), "TRT-LLM video must exist" _run_vbench_and_compare_to_golden( vbench_repo_root, videos_dir, VISUAL_GEN_OUTPUT_VIDEO, VBENCH_WAN_GOLDEN_SCORES, llm_venv, title="WAN", max_score_diff=0.05, )