/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include "tensorrt_llm/common/cudaBf16Fallbacks.cuh" #include "Common.h" #include "Poly.h" namespace tensorrt_llm { namespace kernels { typedef void (*StatePassingKernelFuncFp16)(int B_, int L_, int H_, int P_, int N_, // const half *g_mxY_, // B*L*H*P half* g_mxOs_, // B*C*H*N*P half* g_mxFs_, // B *H*N*P float const* g_mxSt_, // B*C*H*N*P // const float *g_mxdc_, // B*C*H*Q float const* g_mxdA_, // B*C*H*Q // const half *g_mxdt_, // B*L*(2*H*P+2*G*N+H) or B*L*(H*P+2*G*N+H) // const float *g_mxdb_, // H // const float *g_mxA_, // H // const half *g_mxCB_, // B*C*G*Q*Q // const float *g_mxD_, // H // const half *g_mxXBC_, // B*L*(H*P+2*G*N) // const half *g_mxZ_, // B*L*(2*H*P+2*G*N+H) bool removePadding_, int const* lastTokenIdsPtr_, int const* stateSlotMappingPtr_); typedef void (*StatePassingKernelFuncBf16)(int B_, int L_, int H_, int P_, int N_, // const bf16 *g_mxY_, // B*L*H*P bf16* g_mxOs_, // B*C*H*N*P bf16* g_mxFs_, // B *H*N*P float const* g_mxSt_, // B*C*H*N*P // const float *g_mxdc_, // B*C*H*Q float const* g_mxdA_, // B*C*H*Q // const bf16 *g_mxdt_, // B*L*(2*H*P+2*G*N+H) or B*L*(H*P+2*G*N+H) // const float *g_mxdb_, // H // const float *g_mxA_, // H // const bf16 *g_mxCB_, // B*C*G*Q*Q // const float *g_mxD_, // H // const bf16 *g_mxXBC_, // B*L*(H*P+2*G*N) // const bf16 *g_mxZ_, // B*L*(2*H*P+2*G*N+H) bool removePadding_, int const* lastTokenIdsPtr_, int const* stateSlotMappingPtr_); template __global__ std::enable_if_t || std::is_same_v> state_passing_kernel( int B_, int L_, int H_, int P_, int N_, // const Tp_ *g_mxY_, // B*L*H*P Tp_* g_mxOs_, // B*C*H*N*P Tp_* g_mxFs_, // B *H*N*P float const* g_mxSt_, // B*C*H*N*P // const float *g_mxdc_, // B*C*H*Q float const* g_mxdA_, // B*C*H*Q // const Tp_ *g_mxdt_, // B*L*(2*H*P+2*G*N+H) or B*L*(H*P+2*G*N+H) // const Wt_ *g_mxdb_, // H // const Wt_ *g_mxA_, // H // const Tp_ *g_mxCB_, // B*C*G*Q*Q // const Wt_ *g_mxD_, // H // const Tp_ *g_mxXBC_, // B*L*(H*P+2*G*N) // const Tp_ *g_mxZ_, // B*L*(2*H*P+2*G*N+H) bool removePadding_, int const* lastTokenIdsPtr_, int const* stateSlotMappingPtr_) { using namespace tensorrt_llm::common; auto blockIdx_x = Rn{int(blockIdx.x)}; auto blockIdx_y = Rn{int(blockIdx.y)}; auto blockIdx_z = Rn{int(blockIdx.z)}; auto threadIdx_x = Rn{int(threadIdx.x)}; auto threadIdx_y = Rn{int(threadIdx.y)}; // auto B = Rn{B_}; auto L = Rn{L_}; auto H = Rn{H_}; auto P = Rn{P_}; // auto G = Rn{G_}; auto N = Rn{N_}; auto Q = cn; auto C = Rn{div_up(L.var, Q_)}; auto aStart = blockIdx_z * L; auto cStart = blockIdx_z * C; if (removePadding_) { aStart = Rn{int(blockIdx.z ? lastTokenIdsPtr_[blockIdx.z - 1] : 0)}; cStart = Rn{int(blockIdx.z ? div_up(aStart.var, Q_) + blockIdx.z - 1 : 0)}; L = Rn{lastTokenIdsPtr_[blockIdx.z] - aStart.var}; C = Rn{div_up(L.var, Q_)}; } else { L = Rn{lastTokenIdsPtr_[blockIdx.z]}; C = Rn{div_up(L.var, Q_)}; } if (stateSlotMappingPtr_) { g_mxFs_ += stateSlotMappingPtr_[blockIdx.z] * H_ * N_ * P_; } else { g_mxFs_ += blockIdx.z * H_ * N_ * P_; } auto hStart = Rn{blockIdx_x.var * tileH_ / N_ / P_}; register Tp_ r_mxOs[tileH_ / (warpH_ * 32)] = {0}; register float r_mxSt[tileH_ / (warpH_ * 32)] = {0}; for (int iC = 0; iC < C.var; iC++) { if (std::is_same_v) #pragma unroll for (int i = 0; i < tileH_ / (warpH_ * 32); i += 2) *(half2*) &r_mxOs[i] = __float22half2_rn(*(float2*) &r_mxSt[i]); else #pragma unroll for (int i = 0; i < tileH_ / (warpH_ * 32); i += 2) *(bf162*) &r_mxOs[i] = __float22bfloat162_rn(*(float2*) &r_mxSt[i]); #pragma unroll for (int i = 0; i < tileH_ / (warpH_ * 32); i += 2) *(int*) (g_mxOs_ + get((cStart + Rn<>{iC}) * H * N * P + blockIdx_x * cn + (threadIdx_y * cn<32> + threadIdx_x) * cn + Rn{i})) = *(int*) &r_mxOs[i]; float scale = expf(g_mxdA_[get((cStart + Rn<>{iC}) * H * Q + hStart * Q + Q - cn<1>)]); #pragma unroll for (int i = 0; i < tileH_ / (warpH_ * 32); i++) { float tmp = g_mxSt_[get((cStart + Rn<>{iC}) * H * N * P + blockIdx_x * cn + (threadIdx_y * cn<32> + threadIdx_x) * cn + Rn{i})]; r_mxSt[i] = scale * r_mxSt[i] + tmp; } } if (std::is_same_v) #pragma unroll for (int i = 0; i < tileH_ / (warpH_ * 32); i += 2) *(half2*) &r_mxOs[i] = __float22half2_rn(*(float2*) &r_mxSt[i]); else #pragma unroll for (int i = 0; i < tileH_ / (warpH_ * 32); i += 2) *(bf162*) &r_mxOs[i] = __float22bfloat162_rn(*(float2*) &r_mxSt[i]); #pragma unroll for (int i = 0; i < tileH_ / (warpH_ * 32); i += 8) *(int4*) (g_mxFs_ + get(blockIdx_x * cn + (threadIdx_y * cn<32> + threadIdx_x) * cn + Rn{i})) = *(int4*) &r_mxOs[i]; } StatePassingKernelFuncFp16 getStatePassingKernelFp16( int B_, int L_, int H_, int P_, int N_, int Q_, dim3* blockDims_, dim3* threadDims_, int* sharedMem_) { int B = B_; int L = L_; int H = H_; int P = P_; // int G = G_; int N = N_; int Q = Q_; int C = div_up(L, Q); int tileH = 1024; int warpH = 8; auto sharedMem = 0; *blockDims_ = dim3(H * N * P / tileH, 1, B); *threadDims_ = dim3(32, warpH); *sharedMem_ = sharedMem; if (Q_ == 128) return state_passing_kernel<128, 1024, 8, half>; else if (Q_ == 256) return state_passing_kernel<256, 1024, 8, half>; else return nullptr; } StatePassingKernelFuncBf16 getStatePassingKernelBf16( int B_, int L_, int H_, int P_, int N_, int Q_, dim3* blockDims_, dim3* threadDims_, int* sharedMem_) { int B = B_; int L = L_; int H = H_; int P = P_; // int G = G_; int N = N_; int Q = Q_; int C = div_up(L, Q); int tileH = 1024; int warpH = 8; auto sharedMem = 0; *blockDims_ = dim3(H * N * P / tileH, 1, B); *threadDims_ = dim3(32, warpH); *sharedMem_ = sharedMem; if (Q_ == 128) return state_passing_kernel<128, 1024, 8, bf16>; else if (Q_ == 256) return state_passing_kernel<256, 1024, 8, bf16>; else return nullptr; } } // namespace kernels } // namespace tensorrt_llm // vim: ts=2 sw=2 sts=2 et sta