/* * Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/kernels/samplingTopPKernels.h" #include "tensorrt_llm/layers/defaultDecodingParams.h" #include "tensorrt_llm/layers/layerUtils.h" #include "topPSamplingLayer.h" #include #include using namespace tensorrt_llm::common; using namespace tensorrt_llm::kernels; using namespace tensorrt_llm::runtime; namespace tensorrt_llm::layers { static __global__ void setTopPRuntimeArgs(SizeType32 batchSize, SizeType32 topK, SizeType32* topKs, SizeType32 topKsSize, float topP, float* topPs, SizeType32 topPsSize, bool* skipDecode, SizeType32 const* batchSlots, float* initialTopPBuf) { /** * @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps and top_k to top_ks. */ auto index = static_cast(blockIdx.x * blockDim.x + threadIdx.x); for (SizeType32 bi = index; bi < batchSize; bi += static_cast(gridDim.x * blockDim.x)) { auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi; auto k = topKsSize > 1 ? topKs[batchSlot] : topK; auto const p = topPsSize > 1 ? topPs[batchSlot] : topP; if (k == 0 && p == 0.0f) { // TensorRT-LLM's topp implementation does not support topp = 0.0f, but it // equivalent to greedy search. So, we set the topk = 1 as an alternative // solution. k = 1; } topKs[batchSlot] = k; topPs[batchSlot] = p; skipDecode[batchSlot] = k > 0; initialTopPBuf[batchSlot] = topPs[batchSlot]; } } template TopPSamplingLayer::TopPSamplingLayer(DecoderDomain const& decoderDomain, std::shared_ptr bufferManager, bool isDeterministic, bool isAirTopP) : BaseLayer(decoderDomain, bufferManager) , mIsDeterministic(isDeterministic) , mIsAirTopP(isAirTopP) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); int deviceId; tc::check_cuda_error(cudaGetDevice(&deviceId)); // Get the correct device id tc::check_cuda_error(cudaGetDeviceProperties(&mDeviceProp, deviceId)); allocateBuffer(mDecoderDomain.getBatchSize()); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopPSamplingLayer::allocateBuffer(SizeType32 batchSize) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); if (mIsAirTopP == false) { mWorkspaceSize = getTopPWorkspaceSize(batchSize, mDecoderDomain.getVocabSizePadded()); } else { mWorkspaceSize = getAirTopPWorkspaceSize(batchSize, mDecoderDomain.getVocabSizePadded(), mIsDeterministic); } mRuntimeTopKDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType::value); mRuntimeTopPDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType::value); mInitialTopPDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType::value); mTopPDecayDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType::value); mTopPMinDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType::value); mTopPResetIdsDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType::value); mSkipDecodeDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType::value); mSkipDecodeHost = mBufferManager->pinnedPool(ITensor::makeShape({batchSize}), TRTDataType::value); auto skipDecodeHostRange = BufferRange(*mSkipDecodeHost); std::fill(skipDecodeHostRange.begin(), skipDecodeHostRange.end(), true); auto workspaceSize = std::max({mRuntimeTopKDevice->getSizeInBytes(), mRuntimeTopPDevice->getSizeInBytes(), mInitialTopPDevice->getSizeInBytes(), mTopPDecayDevice->getSizeInBytes(), mTopPMinDevice->getSizeInBytes(), mTopPResetIdsDevice->getSizeInBytes(), mSkipDecodeDevice->getSizeInBytes()}); mSetupWorkspaceDevice = mBufferManager->gpu(ITensor::makeShape({static_cast(workspaceSize)}), TRTDataType::value); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopPSamplingLayer::setup(SizeType32 const batchSize, SizeType32 const beamWidth, BufferConstPtr batchSlots, std::shared_ptr const& baseSetupParams) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto setupParams = std::dynamic_pointer_cast(baseSetupParams); auto const defaultTopK = DefaultDecodingParams::getTopK(); auto runtimeTopK = setupParams->runtimeTopK.value_or(std::vector(batchSize, defaultTopK)); auto runtimeTopP = setupParams->runtimeTopP.value_or(std::vector{}); auto const runtimeTopKSize = runtimeTopK.size(); auto const runtimeTopPSize = runtimeTopP.size(); auto const defaultTopPDecay = DefaultDecodingParams::getTopPDecay(); auto decayVec = setupParams->topPDecay.value_or(std::vector(batchSize, defaultTopPDecay)); auto const defaultTopPMin = DefaultDecodingParams::getTopPMin(); // prevent TopP becoming 0.0 auto topPMinVec = setupParams->topPMin.value_or(std::vector(batchSize, defaultTopPMin)); auto const defaultTopPResetId = DefaultDecodingParams::getTopPResetId(); auto topPResetIdsVec = setupParams->topPResetIds.value_or(std::vector(batchSize, defaultTopPResetId)); auto batchSlotsPtr = bufferCastOrNull(batchSlots); auto skipDecodeHostPtr = bufferCastOrNull(mSkipDecodeHost); if (runtimeTopPSize == 0) { for (SizeType32 bi = 0; bi < batchSize; ++bi) { auto bid = bi; if (batchSlotsPtr) { bid = batchSlotsPtr[bi]; } skipDecodeHostPtr[bid] = true; } auto const batchSize = mDecoderDomain.getBatchSize(); auto skipDecodeHostSlice = IBuffer::slice(mSkipDecodeHost, 0, batchSize); mBufferManager->copy(*skipDecodeHostSlice, *mSkipDecodeDevice); return; } for (auto& topP : runtimeTopP) { if (topP < 0.f || topP > 1.0f) { TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP); topP = std::clamp(topP, 0.f, 1.f); } } for (auto& decay : decayVec) { if (decay <= 0.f || decay > 1.0f) { TLLM_LOG_WARNING( "Decay (%f) is out of range ((0.0, 1.0f]). Change to default (%f).", decay, defaultTopPDecay); decay = defaultTopPDecay; } } for (auto& topPMin : topPMinVec) { if (topPMin <= 0.f || topPMin > 1.0f) { TLLM_LOG_WARNING( "TopP min (%f) is out of range ([0.0, 1.0f]). Change to default (%f).", topPMin, defaultTopPMin); topPMin = defaultTopPMin; } } auto const topK = runtimeTopK.at(0); auto const topP = runtimeTopP.at(0); auto setupWorkspaceDevicePtr = reinterpret_cast(bufferCastOrNull(mSetupWorkspaceDevice)); auto setupWorkspaceDeviceAsFloatPtr = reinterpret_cast(setupWorkspaceDevicePtr); auto runtimeTopKDevicePtr = bufferCastOrNull(mRuntimeTopKDevice); if (runtimeTopKSize > 1) { TLLM_CHECK_WITH_INFO(static_cast(runtimeTopK.size()) == batchSize, fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize)); mBufferManager->copy(runtimeTopK.data(), *mSetupWorkspaceDevice, runtime::MemoryType::kCPU); invokeScatterDecodingParams( setupWorkspaceDevicePtr, runtimeTopKDevicePtr, batchSlotsPtr, batchSize, getStream()); } auto runtimeTopPDevicePtr = bufferCastOrNull(mRuntimeTopPDevice); if (runtimeTopPSize > 1) { TLLM_CHECK_WITH_INFO(static_cast(runtimeTopP.size()) == batchSize, fmtstr("runtimeTopP.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize)); mBufferManager->copy(runtimeTopP.data(), *mSetupWorkspaceDevice, runtime::MemoryType::kCPU); invokeScatterDecodingParams( setupWorkspaceDeviceAsFloatPtr, runtimeTopPDevicePtr, batchSlotsPtr, batchSize, getStream()); } auto fillBuffers = [this, batchSize, batchSlotsPtr]( std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer) { TLLM_CHECK_WITH_INFO(static_cast(vector.size()) == batchSize, fmtstr("%s.size() (%lu) == batchSize (%d) is not satisfied!", name.c_str(), vector.size(), batchSize)); cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, getStream()); invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlotsPtr, batchSize, getStream()); }; auto topPDecayDevicePtr = bufferCastOrNull(mTopPDecayDevice); fillBuffers("topPDecay", decayVec, setupWorkspaceDeviceAsFloatPtr, topPDecayDevicePtr); auto topPMinDevicePtr = bufferCastOrNull(mTopPMinDevice); fillBuffers("topPMin", topPMinVec, setupWorkspaceDeviceAsFloatPtr, topPMinDevicePtr); auto topPRestIdsDevicePtr = bufferCastOrNull(mTopPResetIdsDevice); fillBuffers("topPResetIds", topPResetIdsVec, setupWorkspaceDevicePtr, topPRestIdsDevicePtr); { auto skipDecodeDevicePtr = bufferCastOrNull(mSkipDecodeDevice); auto initialTopPDevicePtr = bufferCastOrNull(mInitialTopPDevice); dim3 block(std::min(static_cast(batchSize), 256u)); dim3 grid(divUp(static_cast(batchSize), block.x)); setTopPRuntimeArgs<<>>(batchSize, topK, runtimeTopKDevicePtr, runtimeTopKSize, topP, runtimeTopPDevicePtr, runtimeTopPSize, skipDecodeDevicePtr, batchSlotsPtr, initialTopPDevicePtr); sync_check_cuda_error(); } auto const skipHostDecodeDeviceSlice = ITensor::slice(mSkipDecodeDevice, 0, mDecoderDomain.getBatchSize()); auto skipDecodeHostSlice = ITensor::slice(mSkipDecodeHost, 0, mDecoderDomain.getBatchSize()); mBufferManager->copy(*skipHostDecodeDeviceSlice, *skipDecodeHostSlice); std::vector runtimeTopPs(mDecoderDomain.getBatchSize()); auto const runtimeTopPDeviceSlice = ITensor::slice(mRuntimeTopPDevice, 0, mDecoderDomain.getBatchSize()); mBufferManager->copy(*runtimeTopPDeviceSlice, runtimeTopPs.data(), runtime::MemoryType::kCPU); { auto maxTopP = 0.f; for (SizeType32 bi = 0; bi < batchSize; ++bi) { auto const bid = batchSlotsPtr ? batchSlotsPtr[bi] : bi; maxTopP = std::max(maxTopP, runtimeTopPs[bid]); } mRuntimeMaxTopP = std::max(mRuntimeMaxTopP, maxTopP); } if (mIsAirTopP == true) { auto smCnt = mDeviceProp.multiProcessorCount; if (smCnt <= 0) { int deviceId; check_cuda_error(cudaGetDevice(&deviceId)); // Get the correct device id cudaDeviceProp prop; check_cuda_error(cudaGetDeviceProperties(&prop, deviceId)); smCnt = prop.multiProcessorCount; } mAirTopPBlockNum = calcAirTopPBlockNum(batchSize, (int) mDecoderDomain.getVocabSizePadded(), smCnt, mIsDeterministic); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopPSamplingLayer::forwardAsync( std::shared_ptr const& outputs, std::shared_ptr const& baseInputs) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto inputs = std::dynamic_pointer_cast(baseInputs); auto const batchSize = inputs->logits.value()->getDimension<0>(); auto batchSlotsHost = inputs->batchSlots ? inputs->batchSlots.value() : getDefaultBatchSlots(batchSize, *mBufferManager); auto skipDecodeHostPtr = bufferCastOrNull(mSkipDecodeHost); auto const skip = allOfBatchSlots(bufferCastOrNull(batchSlotsHost), skipDecodeHostPtr, batchSize, true); if (skip) { return; } // Probabilities must be already computed instead of logits auto probs = bufferCastOrNull(inputs->logits); auto endIds = bufferCastOrNull(inputs->endIds); auto batchSlots = bufferCastOrNull(inputs->batchSlots); auto curandStatesDevice = inputs->curandStates; auto samplingWorkspaceDevice = inputs->samplingWorkspace; TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided"); TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided"); auto finishedInput = (inputs->finished) ? reinterpret_cast( bufferCastOrNull(inputs->finished.value())) : nullptr; auto finishedOutput = (outputs->finished) ? reinterpret_cast(bufferCastOrNull(outputs->finished.value())) : nullptr; auto cumLogProbs = bufferCastOrNull(outputs->cumLogProbs); auto outputLogProbs = bufferCastOrNull(outputs->outputLogProbsTiled); auto sequenceLength = bufferCastOrNull(outputs->sequenceLength); TopPSamplingKernelParams params; params.probs = probs; params.outputIds = bufferCastOrNull(outputs->outputIdsPtr); params.workspace = samplingWorkspaceDevice; params.topPs = bufferCastOrNull(mRuntimeTopPDevice); params.sequenceLength = sequenceLength; params.endIds = endIds; params.batchSlots = batchSlots; params.finishedInput = finishedInput; params.finishedOutput = finishedOutput; params.skipDecode = bufferCastOrNull(mSkipDecodeDevice); params.cumLogProbs = cumLogProbs; params.outputLogProbs = outputLogProbs; params.curandState = curandStatesDevice; params.batchSize = batchSize; params.maxBatchSize = mDecoderDomain.getBatchSize(); params.vocabSizePadded = mDecoderDomain.getVocabSizePadded(); if (mIsAirTopP == false) { invokeBatchTopPSampling(params, getStream()); sync_check_cuda_error(); } else { params.blockNum = mAirTopPBlockNum; params.isDeterministic = mIsDeterministic; invokeBatchAirTopPSampling(params, getStream()); sync_check_cuda_error(); } sync_check_cuda_error(); auto runtimeTopPDevicePtr = bufferCastOrNull(mRuntimeTopPDevice); auto initialTopPDevicePtr = bufferCastOrNull(mInitialTopPDevice); auto topPDecayDevicePtr = bufferCastOrNull(mTopPDecayDevice); auto topPMinDevicePtr = bufferCastOrNull(mTopPMinDevice); auto topPResetIdsDevice = bufferCastOrNull(mTopPResetIdsDevice); auto outputIdsPtr = bufferCastOrNull(outputs->outputIdsPtr); invokeComputeToppDecay(runtimeTopPDevicePtr, initialTopPDevicePtr, outputIdsPtr, topPDecayDevicePtr, topPMinDevicePtr, topPResetIdsDevice, sequenceLength, batchSlots, batchSize, getStream()); sync_check_cuda_error(); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template size_t TopPSamplingLayer::getWorkspaceSize() const noexcept { return mWorkspaceSize; } template class TopPSamplingLayer; template class TopPSamplingLayer; } // namespace tensorrt_llm::layers