# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import time from transformers import AutoConfig import tensorrt_llm from tensorrt_llm.models import Phi3ForCausalLM, PhiForCausalLM def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--model_dir', type=str, default=None) parser.add_argument('--tp_size', type=int, default=1, help='N-way tensor parallelism size') parser.add_argument('--pp_size', type=int, default=1, help='N-way pipeline parallelism size') parser.add_argument('--dtype', type=str, default='float16', choices=['float32', 'bfloat16', 'float16']) parser.add_argument( '--use_weight_only', default=False, action="store_true", help='Quantize weights for the various GEMMs to INT4/INT8.' 'See --weight_only_precision to set the precision') parser.add_argument( '--weight_only_precision', const='int8', type=str, nargs='?', default='int8', choices=['int8', 'int4'], help= 'Define the precision for the weights when using weight-only quantization.' 'You must also use --use_weight_only for that argument to have an impact.' ) parser.add_argument('--output_dir', type=str, default='tllm_checkpoint', help='The path to save the TensorRT-LLM checkpoint') parser.add_argument( '--workers', type=int, default=1, help='The number of workers for converting checkpoint in parallel') args = parser.parse_args() return args if __name__ == '__main__': print(tensorrt_llm.__version__) args = parse_arguments() assert args.pp_size == 1, "Pipeline parallelism is not supported." tik = time.time() if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) model_config = AutoConfig.from_pretrained(args.model_dir, trust_remote_code=True) model_type = model_config.architectures[0] supported_models = [ 'PhiForCausalLM', 'Phi3ForCausalLM', 'Phi3VForCausalLM', 'Phi3SmallForCausalLM' ] modelForCausalLM = None if model_type not in supported_models: assert False, "Invalid model type" modelForCausalLM = PhiForCausalLM if model_type == 'PhiForCausalLM' else Phi3ForCausalLM modelForCausalLM.convert_hf_checkpoint(args.model_dir, dtype=args.dtype, output_dir=args.output_dir, args=args) tok = time.time() t = time.strftime('%H:%M:%S', time.gmtime(tok - tik)) print(f'Total time of converting checkpoints: {t}')