import argparse import os import time import traceback from concurrent.futures import ThreadPoolExecutor, as_completed import tensorrt_llm from tensorrt_llm._utils import release_gc from tensorrt_llm.logger import logger from tensorrt_llm.mapping import Mapping from tensorrt_llm.models import CohereForCausalLM from tensorrt_llm.models.modeling_utils import QuantConfig from tensorrt_llm.quantization import QuantAlgo def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--model_dir', type=str, default=None) parser.add_argument('--tp_size', type=int, default=1, help='N-way tensor parallelism size') parser.add_argument('--pp_size', type=int, default=1, help='N-way pipeline parallelism size') parser.add_argument( '--dtype', type=str, default='auto', choices=['auto', 'float16', 'bfloat16', 'float32'], help= "The data type for the model weights and activations if not quantized. " "If 'auto', the data type is automatically inferred from the source model; " "however, if the source dtype is float32, it is converted to float16.") parser.add_argument( '--use_weight_only', default=False, action="store_true", help='Quantize weights for the various GEMMs to INT4/INT8.' 'See --weight_only_precision to set the precision') parser.add_argument( '--disable_weight_only_quant_plugin', default=False, action="store_true", help= 'By default, using plugin implementation for weight quantization. Enabling disable_weight_only_quant_plugin flag will use ootb implementation instead of plugin.' 'You must also use --use_weight_only for that argument to have an impact.' ) parser.add_argument( '--weight_only_precision', const='int8', type=str, nargs='?', default='int8', choices=['int8', 'int4'], help= 'Define the precision for the weights when using weight-only quantization.' 'You must also use --use_weight_only for that argument to have an impact.' ) parser.add_argument("--load_model_on_cpu", action="store_true") parser.add_argument( '--use_parallel_embedding', action="store_true", default=False, help= 'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled' ) parser.add_argument( '--embedding_sharding_dim', type=int, default=0, choices=[0, 1], help= 'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). ' 'To shard it along hidden dimension, set embedding_sharding_dim=1' 'Note: embedding sharing is only enabled when embedding_sharding_dim = 0' ) parser.add_argument('--output_dir', type=str, default='tllm_checkpoint', help='The path to save the TensorRT-LLM checkpoint') parser.add_argument( '--workers', type=int, default=1, help='The number of workers for converting checkpoint in parallel') parser.add_argument('--log_level', type=str, default='info') args = parser.parse_args() return args def args_to_quant_config(args: argparse.Namespace) -> QuantConfig: '''return config dict with quantization info based on the command line args ''' quant_config = QuantConfig() if args.use_weight_only: if args.weight_only_precision == 'int8': quant_config.quant_algo = QuantAlgo.W8A16 elif args.weight_only_precision == 'int4': quant_config.quant_algo = QuantAlgo.W4A16 return quant_config def args_to_build_options(args): return { 'use_parallel_embedding': args.use_parallel_embedding, 'embedding_sharding_dim': args.embedding_sharding_dim, 'disable_weight_only_quant_plugin': args.disable_weight_only_quant_plugin, 'load_model_on_cpu': args.load_model_on_cpu, } def convert_and_save_hf(args): model_dir = args.model_dir world_size = args.tp_size * args.pp_size # Need to convert the cli args to the kay-value pairs and override them in the generate config dict. # Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now, # before the refactor is done. override_fields = {} override_fields.update(args_to_build_options(args)) quant_config = args_to_quant_config(args) def convert_and_save_rank(args, rank): mapping = Mapping(world_size=world_size, rank=rank, tp_size=args.tp_size, pp_size=args.pp_size) cohere = CohereForCausalLM.from_hugging_face( model_dir, args.dtype, mapping=mapping, quant_config=quant_config, **override_fields, ) cohere.save_checkpoint(args.output_dir, save_config=(rank == 0)) del cohere execute(args.workers, [convert_and_save_rank] * world_size, args) release_gc() def execute(workers, func, args): if workers == 1: for rank, f in enumerate(func): f(args, rank) else: with ThreadPoolExecutor(max_workers=workers) as p: futures = [p.submit(f, args, rank) for rank, f in enumerate(func)] exceptions = [] for future in as_completed(futures): try: future.result() except Exception as e: traceback.print_exc() exceptions.append(e) assert len( exceptions ) == 0, "Checkpoint conversion failed, please check error log." def main(): print(tensorrt_llm.__version__) args = parse_arguments() logger.set_level(args.log_level) tik = time.time() if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) assert args.model_dir is not None convert_and_save_hf(args) tok = time.time() t = time.strftime('%H:%M:%S', time.gmtime(tok - tik)) print(f'Total time of converting checkpoints: {t}') if __name__ == '__main__': main()