#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import pathlib as _pl import platform as _pf import sys as _sys from build_engines_utils import run_command, wincopy import tensorrt_llm.bindings as _tb from tensorrt_llm.bindings.internal.testing import ModelSpec def build_engine(base_model_dir: _pl.Path, medusa_model_dir: _pl.Path, engine_dir: _pl.Path, *args): covert_cmd = [_sys.executable, "examples/medusa/convert_checkpoint.py"] + ( ['--model_dir', str(base_model_dir)] if base_model_dir else []) + [ '--medusa_model_dir', str(medusa_model_dir), \ '--output_dir', str(engine_dir), '--dtype=float16', '--num_medusa_heads=4' ] + list(args) run_command(covert_cmd) build_args = ["trtllm-build"] + ( ['--checkpoint_dir', str(engine_dir)] if engine_dir else []) + [ '--output_dir', str(engine_dir), '--gemm_plugin=float16', '--max_batch_size=8', '--max_input_len=12', '--max_seq_len=140', '--log_level=error', '--paged_kv_cache=enable', '--use_paged_context_fmha=enable', '--remove_input_padding=enable', '--speculative_decoding_mode=medusa', ] run_command(build_args) def build_engines(model_cache: str): resources_dir = _pl.Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' model_name = 'vicuna-7b-medusa' base_model_name = 'vicuna-7b-v1.3' medusa_model_name = 'medusa-vicuna-7b-v1.3' if model_cache: print(f"Copy model from {model_cache}") base_model_cache_dir = _pl.Path(model_cache) / base_model_name medusa_head_cache_dir = _pl.Path(model_cache) / medusa_model_name assert base_model_cache_dir.is_dir(), base_model_cache_dir assert medusa_head_cache_dir.is_dir(), medusa_head_cache_dir if _pf.system() == "Windows": wincopy(source=str(base_model_cache_dir), dest=base_model_name, isdir=True, cwd=models_dir) wincopy(source=str(medusa_head_cache_dir), dest=medusa_model_name, isdir=True, cwd=models_dir) else: run_command(["rsync", "-rlptD", str(base_model_cache_dir), "."], cwd=models_dir) run_command(["rsync", "-rlptD", str(medusa_head_cache_dir), "."], cwd=models_dir) base_model_dir = models_dir / base_model_name medusa_model_dir = models_dir / medusa_model_name assert base_model_dir.is_dir() assert medusa_model_dir.is_dir() engine_dir = models_dir / 'rt_engine' / model_name model_spec_obj = ModelSpec('input_tokens.npy', _tb.DataType.HALF) model_spec_obj.use_gpt_plugin() model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED) model_spec_obj.use_packed_input() model_spec_obj.use_medusa() full_engine_path = engine_dir / model_spec_obj.get_model_path( ) / 'tp1-pp1-cp1-gpu' print(f"\nBuilding fp16 engine at {str(full_engine_path)}") build_engine(base_model_dir, medusa_model_dir, full_engine_path) print("Done.") if __name__ == "__main__": parser = _arg.ArgumentParser() parser.add_argument("--model_cache", type=str, help="Directory where models are stored") build_engines(**vars(parser.parse_args()))