/* * Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fusedQKNormRopeKernel.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/mathUtils.h" #include "tensorrt_llm/common/reduceKernelUtils.cuh" #include #include #include #include #include namespace tensorrt_llm::common { // Specialization for packed_as used in this kernel. template <> struct packed_as { using type = uint; }; template <> struct packed_as { using type = uint2; }; template <> struct packed_as { using type = uint4; }; } // namespace tensorrt_llm::common namespace tensorrt_llm::kernels { //////////////////////////////////////////////////////////////////////////////////////////////////// // Perform per-head QK Norm and RoPE in a single kernel. // head_dim: the dimension of each head // interleave: interleave=!is_neox. template __global__ void fusedQKNormRopeKernel( __nv_bfloat16* qkv, // Combined QKV tensor [num_tokens, (num_heads_q+num_heads_k+num_heads_v)*head_dim] int const num_heads_q, // Number of query heads int const num_heads_k, // Number of key heads int const num_heads_v, // Number of value heads float const eps, // Epsilon for RMS normalization __nv_bfloat16 const* q_weight, // RMSNorm weights for query __nv_bfloat16 const* k_weight, // RMSNorm weights for key float const base, // Base for RoPE computation int const* position_ids, // Position IDs for RoPE int const num_tokens // Number of tokens ) { int const warpsPerBlock = blockDim.x / 32; int const warpId = threadIdx.x / 32; int const laneId = threadIdx.x % 32; // Calculate global warp index to determine which head/token this warp processes int const globalWarpIdx = blockIdx.x * warpsPerBlock + warpId; // Total number of attention heads (Q and K) int const total_qk_heads = num_heads_q + num_heads_k; // Determine which token and head type (Q or K) this warp processes int const tokenIdx = globalWarpIdx / total_qk_heads; int const localHeadIdx = globalWarpIdx % total_qk_heads; // Skip if this warp is assigned beyond the number of tokens if (tokenIdx >= num_tokens) return; bool const isQ = localHeadIdx < num_heads_q; int const headIdx = isQ ? localHeadIdx : localHeadIdx - num_heads_q; int const num_heads = num_heads_q + num_heads_k + num_heads_v; static_assert(head_dim % (32 * 2) == 0, "head_dim must be divisible by 64 (each warp processes one head, and each thread gets even number of " "elements)"); constexpr int numElemsPerThread = head_dim / 32; float elements[numElemsPerThread]; constexpr int elemSizeBytes = numElemsPerThread * sizeof(__nv_bfloat16); static_assert(elemSizeBytes % 4 == 0, "numSizeBytes must be a multiple of 4"); constexpr int vecSize = elemSizeBytes / 4; // Use packed_as to perform loading/saving. using vec_T = typename tensorrt_llm::common::packed_as::type; int offsetWarp; // Offset for the warp if (isQ) { // Q segment: token offset + head offset within Q segment offsetWarp = tokenIdx * num_heads * head_dim + headIdx * head_dim; } else { // K segment: token offset + entire Q segment + head offset within K segment offsetWarp = tokenIdx * num_heads * head_dim + num_heads_q * head_dim + headIdx * head_dim; } int offsetThread = offsetWarp + laneId * numElemsPerThread; // Sum of squares for RMSNorm float sumOfSquares = 0.0f; // Load. { vec_T vec = *reinterpret_cast(&qkv[offsetThread]); for (int i = 0; i < vecSize; i++) { float2 vals = __bfloat1622float2(*reinterpret_cast<__nv_bfloat162*>(reinterpret_cast(&vec) + i)); sumOfSquares += vals.x * vals.x; sumOfSquares += vals.y * vals.y; elements[2 * i] = vals.x; elements[2 * i + 1] = vals.y; } } // Reduce sum across warp using the utility function sumOfSquares = tensorrt_llm::common::warpReduceSum(sumOfSquares); // Compute RMS normalization factor float rms_rcp = rsqrtf(sumOfSquares / static_cast(head_dim) + eps); // Normalize elements for (int i = 0; i < numElemsPerThread; i++) { int dim = laneId * numElemsPerThread + i; float weight = isQ ? __bfloat162float(q_weight[dim]) : __bfloat162float(k_weight[dim]); elements[i] *= rms_rcp * weight; } // Apply RoPE to normalized elements float elements2[numElemsPerThread]; // Additional buffer required for RoPE. float cos_vals[numElemsPerThread]; float sin_vals[numElemsPerThread]; float pos_id = static_cast(position_ids[tokenIdx]); // TODO: cos sin calculation could be halved. if constexpr (interleave) { // Perform interleaving. Fill cos_vals and sin_vals. for (int i = 0; i < numElemsPerThread; i++) { if (i % 2 == 0) { elements2[i] = -elements[i + 1]; } else { elements2[i] = elements[i - 1]; } int dim_idx = laneId * numElemsPerThread + i; int half_dim = dim_idx / 2; float freq = powf(base, -2.0f * half_dim / static_cast(head_dim)); float theta = pos_id * freq; __sincosf(theta, &sin_vals[i], &cos_vals[i]); } } else { // Before data exchange with in warp, we need to sync. __syncwarp(); // Get the data from the other half of the warp. Fill cos_vals and sin_vals. for (int i = 0; i < numElemsPerThread; i++) { elements2[i] = __shfl_xor_sync(0xffffffff, elements[i], 16); if (laneId < 16) { elements2[i] = -elements2[i]; } int dim_idx = laneId * numElemsPerThread + i; dim_idx = (dim_idx * 2) % head_dim; int half_dim = dim_idx / 2; float freq = powf(base, -2.0f * half_dim / static_cast(head_dim)); float theta = pos_id * freq; __sincosf(theta, &sin_vals[i], &cos_vals[i]); } // __shfl_xor_sync does not provide memfence. Need to sync again. __syncwarp(); } for (int i = 0; i < numElemsPerThread; i++) { elements[i] = elements[i] * cos_vals[i] + elements2[i] * sin_vals[i]; } // Store. { vec_T vec; for (int i = 0; i < vecSize; i++) { __nv_bfloat162 vals = __float22bfloat162_rn(make_float2(elements[2 * i], elements[2 * i + 1])); reinterpret_cast<__nv_bfloat162&>(*(reinterpret_cast(&vec) + i)) = vals; } vec_T* outputPtr = reinterpret_cast(&qkv[offsetThread]); *outputPtr = vec; } } // Borrowed from // https://github.com/flashinfer-ai/flashinfer/blob/8125d079a43e9a0ba463a4ed1b639cefd084cec9/include/flashinfer/pos_enc.cuh#L568 #define DISPATCH_INTERLEAVE(interleave, INTERLEAVE, ...) \ if (interleave) \ { \ const bool INTERLEAVE = true; \ __VA_ARGS__ \ } \ else \ { \ const bool INTERLEAVE = false; \ __VA_ARGS__ \ } void launchFusedQKNormRope(void* qkv, int const num_tokens, int const num_heads_q, int const num_heads_k, int const num_heads_v, int const head_dim, float const eps, void const* q_weight, void const* k_weight, float const base, bool const interleave, int const* position_ids, cudaStream_t stream) { constexpr int blockSize = 256; int const warpsPerBlock = blockSize / 32; int const totalQKHeads = num_heads_q + num_heads_k; int const totalWarps = num_tokens * totalQKHeads; int const gridSize = common::divUp(totalWarps, warpsPerBlock); dim3 gridDim(gridSize); dim3 blockDim(blockSize); // Head dimensions should be a multiple of 64 // Add more cases as needed switch (head_dim) { case 64: DISPATCH_INTERLEAVE(interleave, INTERLEAVE, { fusedQKNormRopeKernel<64, INTERLEAVE> <<>>(reinterpret_cast<__nv_bfloat16*>(qkv), num_heads_q, num_heads_k, num_heads_v, eps, reinterpret_cast<__nv_bfloat16 const*>(q_weight), reinterpret_cast<__nv_bfloat16 const*>(k_weight), base, position_ids, num_tokens); }); break; case 128: DISPATCH_INTERLEAVE(interleave, INTERLEAVE, { fusedQKNormRopeKernel<128, INTERLEAVE> <<>>(reinterpret_cast<__nv_bfloat16*>(qkv), num_heads_q, num_heads_k, num_heads_v, eps, reinterpret_cast<__nv_bfloat16 const*>(q_weight), reinterpret_cast<__nv_bfloat16 const*>(k_weight), base, position_ids, num_tokens); }); break; default: TLLM_THROW("Unsupported head dimension for fusedQKNormRope: %d", head_dim); } } } // namespace tensorrt_llm::kernels