/* * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef TRT_MAMBA_CONV1D_PLUGIN_H #define TRT_MAMBA_CONV1D_PLUGIN_H #include "tensorrt_llm/kernels/mambaConv1dKernels.h" #include "tensorrt_llm/plugins/common/plugin.h" #include namespace tensorrt_llm::plugins { // batch_size = num_ctx_requests or num_gen_requests // num_ctx_requests = number of context requests (single sequence per request). // num_gen_requests = number of generation requests (single sequences per request). // can not support beam search // inputs // 0. input_tensor [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding // 1. conv_state [batch_size, dconv - 1, dim] or host [1] containing only pointer for paged_state // 2. weight [1, dconv, dim] // 3. bias [dim] // 4. host_request_types [batch_size] int32. 0: context; 1: generation; 2: none. // 5. last_token_ids [batch_size] int32 // 6. host_context_lengths [batch_size] int32, optional for remove_input_padding // 7. state_slot_mapping [batch_size] int32, optional // outputs // 0. output_tensor [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding // 1. conv_state [batch_size, dconv - 1, dim] class MambaConv1dPlugin : public BasePlugin { public: MambaConv1dPlugin(int dim, int dconv, int preStride, int postStride, nvinfer1::DataType type, bool removePadding, bool pagedState, bool applySilu); MambaConv1dPlugin(void const* data, size_t length); ~MambaConv1dPlugin() override = default; // IPluginV2DynamicExt Methods nvinfer1::IPluginV2DynamicExt* clone() const noexcept override; nvinfer1::DimsExprs getOutputDimensions(int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept override; bool supportsFormatCombination( int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept override; void configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs, nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept override; size_t getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs, nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept override; int enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override; template int enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream); // IPluginV2Ext Methods nvinfer1::DataType getOutputDataType( int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept override; // IPluginV2 Methods char const* getPluginType() const noexcept override; char const* getPluginVersion() const noexcept override; int getNbOutputs() const noexcept override; int initialize() noexcept override; void terminate() noexcept override; size_t getSerializationSize() const noexcept override; void serialize(void* buffer) const noexcept override; void destroy() noexcept override; enum class RequestType : int32_t { kCONTEXT = 0, kGENERATION = 1 }; private: using IndexType = std::int32_t; IndexType getInputTensorIdx() const { return 0; }; IndexType getConvStateIdx() const { return 1; }; IndexType getWeightIdx() const { return 2; }; IndexType getBiasIdx() const { return 3; }; IndexType getHostRequestTypesIdx() const { return 4; }; IndexType getLastTokenIdsIdx() const { return 5; }; IndexType getHostContextLengthIdx() const { return 6; }; IndexType getSlotMappingIdx() const { // if not remove input padding, host_context_length is not used, so the index is 6 return mRemovePadding ? 7 : 6; }; void setMambaConv1dParams(tensorrt_llm::kernels::MambaConv1dParamsBase& params, // sizes const size_t batch, const size_t dim, const size_t maxSeqLen, const size_t dconv, const size_t preStride, const size_t postStride, // device pointers void const* inPtr, void const* stateInPtr, void* stateOutPtr, void const* convWeight, void const* convBias, void* outPtr, int const* lastTokenIds, int const* stateSlotMapping, bool removePadding, bool applySilu); private: int mDim; int mDConv; int mPreStride; int mPostStride; nvinfer1::DataType mType; bool mRemovePadding = false; bool mPagedState = false; bool mApplySilu = true; }; class MambaConv1dPluginCreator : public BaseCreator { public: MambaConv1dPluginCreator(); char const* getPluginName() const noexcept override; char const* getPluginVersion() const noexcept override; nvinfer1::PluginFieldCollection const* getFieldNames() noexcept override; nvinfer1::IPluginV2* createPlugin(char const* name, nvinfer1::PluginFieldCollection const* fc) noexcept override; nvinfer1::IPluginV2* deserializePlugin( char const* name, void const* serialData, size_t serialLength) noexcept override; private: static nvinfer1::PluginFieldCollection mFC; static std::vector mPluginAttributes; }; } // namespace tensorrt_llm::plugins #endif // TRT_MAMBA_CONV1D_PLUGIN_H