# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import array import struct import sys from typing import List, Tuple from cuda import cuda, cudart from cuda.cudart import cudaError_t from ._utils import mpi_comm from .logger import logger from .mapping import Mapping def _raise_if_error(error: cudaError_t | cuda.CUresult): if isinstance(error, cudaError_t): if error != cudaError_t.cudaSuccess: raise RuntimeError(f"CUDA Runtime API error: {repr(error)}") if isinstance(error, cuda.CUresult): if error != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError(f"CUDA Driver API error: {repr(error)}") def can_access_peer(mapping: Mapping) -> bool: src_node = mapping.local_rank for rank in mapping.tp_group: dest_node = mapping.get_local_rank(rank) # Early exit if devices are on different nodes if mapping.get_node_rank(rank) != mapping.node_rank: logger.info(f"Detect inter-node TP between rank {mapping.rank} and rank {rank}") return False # Skip if same device if dest_node == src_node: continue error, result = cudart.cudaDeviceCanAccessPeer(src_node, dest_node) _raise_if_error(error) if result == 0: logger.info( f"cudaDeviceCanAccessPeer failed for device: {src_node} peerDevice: {dest_node}" ) return False return True class IpcMemory: # WARNING: Must in sync with FLAGS_SIZE in cpp/include/tensorrt_llm/runtime/ipcUtils.h # (Max all reduce blocks + 1) * sizeof(int) IPC_BARRIERS_SIZE_PER_GPU = (24 + 1) * 4 def __init__(self, mapping: Mapping, size: int, open_ipc: bool = True): self.mapping = mapping self.open_ipc = open_ipc and mapping.tp_size <= mapping.gpus_per_node if self.open_ipc: self.peer_ptrs, self.local_ptr = IpcMemory.open_ipc_memory(self.mapping, size, True) else: self.peer_ptrs = [0] * mapping.tp_size self.local_ptr = 0 def __del__(self): if not sys.is_finalizing() and self.open_ipc: IpcMemory.close_ipc_memory(self.mapping, self.peer_ptrs) def serialize(self) -> List[int]: buffer = bytes(0) for ptr in self.peer_ptrs: buffer += struct.pack("P", ptr) return array.array("Q", buffer).tolist() @staticmethod def open_ipc_memory( mapping: Mapping, size: int, set_to_zero: bool = False ) -> Tuple[List[int], int]: """Allocates a buffer with the given *size* on each GPU. Then, enables IPC communication between TP groups. Returns a list of buffer pointers, buffers[i] is a handle to the corresponding buffer residing on GPU #i. Call close_ipc_handle with the *buffer*. """ def align_size(size, alignment): if (size % alignment) != 0: size += alignment - (size % alignment) return size comm = mpi_comm().Split( mapping.pp_rank * mapping.cp_size + mapping.cp_rank, mapping.tp_rank ) # see allocateIpcMemory in cpp/tensorrt_llm/runtime/ipcUtils.cpp for alignment reason # 1 << 21 is 2MB aligned_size = align_size(size, 1 << 21) error, local_ptr = cudart.cudaMalloc(aligned_size) _raise_if_error(error) if set_to_zero: _raise_if_error(cudart.cudaMemset(local_ptr, 0, aligned_size)[0]) error, local_handle = cudart.cudaIpcGetMemHandle(local_ptr) _raise_if_error(error) handles_reserved = comm.allgather(local_handle.reserved) handles = [] for reserved in handles_reserved: handle = cudart.cudaIpcMemHandle_t() handle.reserved = reserved handles.append(handle) peer_ptrs = [] for node, handle in enumerate(handles): if node == mapping.tp_rank: peer_ptrs.append(local_ptr) else: error, ptr = cudart.cudaIpcOpenMemHandle( handle, cudart.cudaIpcMemLazyEnablePeerAccess ) _raise_if_error(error) peer_ptrs.append(ptr) return peer_ptrs, local_ptr @staticmethod def close_ipc_memory(mapping: Mapping, peer_ptrs: List[int]): for node, ptr in enumerate(peer_ptrs): if node == mapping.tp_rank: _raise_if_error(cudart.cudaFree(ptr)[0]) else: _raise_if_error(cudart.cudaIpcCloseMemHandle(ptr)[0])