Performance of TensorRT-LLM

This document summarizes performance measurements of TensorRT-LLM on H100 (Hopper), L40S (Ada) and A100 (Ampere) GPUs for a few key models.

The data in the following tables is provided as a reference point to help users validate observed performance. It should not be considered as the peak performance that can be delivered by TensorRT-LLM.

Methodology

The different performance numbers below were collected using the methodology described in the benchmarks folder.

Peak Throughput

The below tables provide reference data at large batch sizes, representing high throughput offline tasks.

All data was generated using version 0.8.0

H200 GPUs (FP8)

Model

Batch Size

TP (1)

Input Length

Output Length

Throughput (out tok/s/GPU)

GPT-J 6B

1024

1

128

128

29,168

GPT-J 6B

120

1

128

2048

9,472

GPT-J 6B

64

1

2048

128

2,961

GPT-J 6B

64

1

2048

2048

4,149

Mistral 7B

896

1

128

128

20,569

Mistral 7B

120

1

128

2048

8,968

Mistral 7B

84

1

2048

128

2,450

Mistral 7B

56

1

2048

2048

3,868

LLaMA 7B

896

1

128

128

20,548

LLaMA 7B

120

1

128

2048

8,343

LLaMA 7B

84

1

2048

128

2,429

LLaMA 7B

56

1

2048

2048

3,530

LLaMA 70B

512

1

128

128

3,844

LLaMA 70B

512

2

128

2048

4,008

LLaMA 70B

64

1

2048

128

421

LLaMA 70B

64

1

2048

2048

1,461

Falcon 180B

1024

4

128

128

1,116

Falcon 180B

1024

4

128

2048

990

Falcon 180B

64

4

2048

128

118

Falcon 180B

64

4

2048

2048

269

H100 GPUs (FP8)

Model

Batch Size

TP (1)

Input Length

Output Length

Throughput (out tok/s/GPU)

GPT-J 6B

1024

1

128

128

27,357

GPT-J 6B

120

1

128

2048

7,831

GPT-J 6B

64

1

2048

128

2,661

GPT-J 6B

64

1

2048

2048

3,409

Mistral 7B

896

1

128

128

20,517

Mistral 7B

120

1

128

2048

8,619

Mistral 7B

64

1

2048

128

2,438

Mistral 7B

56

1

2048

2048

3,733

LLaMA 7B

896

1

128

128

20,241

LLaMA 7B

120

1

128

2048

6,922

LLaMA 7B

64

1

2048

128

2,170

LLaMA 7B

56

1

2048

2048

2,816

LLaMA 70B

1024

2

128

128

3,269

LLaMA 70B

512

4

128

2048

2,718

LLaMA 70B

96

2

2048

128

347

LLaMA 70B

64

2

2048

2048

1,020

Falcon 180B

512

4

128

128

1,048

Falcon 180B

1024

8

128

2048

836

Falcon 180B

64

4

2048

128

114

Falcon 180B

64

4

2048

2048

250

L40S GPUs (FP8)

Model

Batch Size

TP (1)

Input Length

Output Length

Throughput (out tok/s/GPU)

GPT-J 6B

512

1

128

128

7,992

GPT-J 6B

64

1

128

2048

1,874

GPT-J 6B

32

1

2048

128

693

GPT-J 6B

32

1

2048

2048

768

Mistral 7B

896

1

128

128

9,679

Mistral 7B

120

1

128

2048

4,401

Mistral 7B

84

1

2048

128

979

Mistral 7B

56

1

2048

2048

1,721

LLaMA 7B

256

1

128

128

5,954

LLaMA 7B

64

1

128

2048

1,654

LLaMA 7B

32

1

2048

128

579

LLaMA 7B

16

1

2048

2048

542

LLaMA 70B

256

2

128

128

561

LLaMA 70B

256

4

128

2048

471

LLaMA 70B

16

2

2048

128

49

LLaMA 70B

64

4

2048

2048

177

Falcon 180B

512

8

128

128

152

Falcon 180B

256

8

128

2048

200

Falcon 180B

32

8

2048

128

15

Falcon 180B

16

8

2048

2048

39

A100 GPUs (FP16)

Model

Batch Size

TP (1)

Input Length

Output Length

Throughput (out tok/s/GPU)

GPT-J 6B

512

1

128

128

6,810

GPT-J 6B

32

1

128

2048

1,658

GPT-J 6B

32

1

2048

128

631

GPT-J 6B

16

1

2048

2048

692

Mistral 7B

896

1

128

128

6,472

Mistral 7B

120

1

128

2048

3,812

Mistral 7B

84

1

2048

128

734

Mistral 7B

56

1

2048

2048

1,607

LLaMA 7B

256

1

128

128

5,353

LLaMA 7B

32

1

128

2048

1,518

LLaMA 7B

32

1

2048

128

547

LLaMA 7B

16

1

2048

2048

613

LLaMA 70B

256

4

128

128

565

LLaMA 70B

128

4

128

2048

595

LLaMA 70B

32

4

2048

128

66

LLaMA 70B

32

4

2048

2048

185

Falcon 180B

256

8

128

128

193

Falcon 180B

256

8

128

2048

203

Falcon 180B

16

8

2048

128

20

(1) TP stands for Tensor Parallelism.

Low Latency**

All data was generated using version 0.8.0 ** Low latency numbers will soon be updated to reflect real time latency with infight-batching.

The below tables provide reference data at batch size 1 for first token latency, representing end-user’s perceived latency for online streaming tasks.

H200 GPUs (FP8)

Model

Batch Size

TP (1)

Input Length

1st Token Latency (ms)

GPT-J 6B

1

1

128

5.2

GPT-J 6B

1

1

2048

23.6

Mistral 7B

1

1

128

6.0

Mistral 7B

1

1

2048

31.8

LLaMA 7B

1

1

128

5.8

LLaMA 7B

1

1

2048

30.1

LLaMA 70B

1

8

128

16.0

LLaMA 70B

1

8

2048

78.8

Falcon 180B

1

8

128

37.2

Falcon 180B

1

8

2048

120.8

H100 GPUs (FP8)

Model

Batch Size

TP (1)

Input Length

1st Token Latency (ms)

GPT-J 6B

1

1

128

5.7

GPT-J 6B

1

1

2048

23.8

Mistral 7B

1

1

128

6.6

Mistral 7B

1

1

2048

32.6

LLaMA 7B

1

1

128

6.4

LLaMA 7B

1

1

2048

31.0

LLaMA 70B

1

8

128

17.0

LLaMA 70B

1

8

2048

84.4

Falcon 180B

1

8

128

39.7

Falcon 180B

1

8

2048

128.0

L40S GPUs (FP8)

Model

Batch Size

TP (1)

Input Length

1st Token Latency (ms)

GPT-J 6B

1

1

128

12.6

GPT-J 6B

1

1

2048

61.2

Mistral 7B

1

1

128

15.5

Mistral 7B

1

1

2048

84.3

LLaMA 7B

1

1

128

14.3

LLaMA 7B

1

1

2048

79.0

LLaMA 70B

1

8

128

70.9

LLaMA 70B

1

8

2048

708.7

Falcon 180B

1

8

128

93.4

Falcon 180B

1

8

2048

769.8

A100 GPUs (FP16)

Model

Batch Size

TP (1)

Input Length

1st Token Latency (ms)

GPT-J 6B

1

1

128

14.1

GPT-J 6B

1

1

2048

102.8

Mistral 7B

1

1

128

16.4

Mistral 7B

1

1

2048

128.7

LLaMA 7B

1

1

128

16.1

LLaMA 7B

1

1

2048

120.5

LLaMA 70B

1

8

128

35.6

LLaMA 70B

1

8

2048

235.1

Falcon 180B

1

8

128

76.5

Falcon 180B

1

8

2048

463.0

(1) TP stands for Tensor Parallelism.

Known Issues

The following issues are being addressed to improve the efficiency of TensorRT-LLM.

Fused Matmul + Gated-SiLU (LLaMA)

The current implementation combines two Matmul operations into one Matmul followed by a separate SwiGLU kernel (when --use_fused_mlp is enabled). The future release will include a more efficient implementation that runs single Matmul + SwiGLU fused kernel.

Reproducing Benchmarked Results

Building the TensorRT-LLM Container


In order to benchmark TensorRT-LLM, you will need to follow the Quick Start build process to create a baseline container for building a wheel. Additionally, the development container needs a copy of the source code to build the wheel and the benchmarking script. Create the right build environment, use the following :

git clone https://github.com/NVIDIA/TensorRT-LLM.git
cd TensorRT-LLM
git submodule update --init --recursive
git lfs install
git lfs pull
make -C docker build
make -C docker run LOCAL_USER=1

[!WARNING] If you have elevated privileges on your system, then skip the make -C docker run LOCAL_USER=1 command above as it may make it so that you cannot access some required system libraries within the container because the build forces your UID and GID to match those that are set for your non-elevated user. There are cases where the container will be booted as root (i.e. on some SLURM systems with the pyxis plugin) which will cause libraries to be missing.

If you are benchmarking in a shared environment, you need to specify the GPU indices that you would like the container to use, otherwise the Makefile defaults to loading the container with all GPUs on the system. For example, if you only have the 4 higher indices of GPUs on your system you can configure it using the following example:

NV_GPU=0,1,2,3
make -C docker run LOCAL_USER=1 GPU_OPTS='--gpus \"device=${NV_GPU}\"'

Additionally, if you’d like to mount external storage to access persistent storage, or previously built engines, you can mount directories as follows (simply replace source and destination with the appropriate paths):

make -C docker run LOCAL_USER=1 DOCKER_RUN_ARGS="-v /source:/destination"

Once the container starts, you’ll need to build the wheel and the benchmarking scripts. From the code root (the default directory when the container is loaded), the following commands will build the TensorRT-LLM wheel, install dependencies, and build the benchmark scripts:

python3 ./scripts/build_wheel.py --benchmarks --trt_root /usr/local/tensorrt
pip install ./build/tensorrt_llm*.whl

Methodology

Engine Building Setups

Each engine needs to be built before they can be benchmarked, and requires the source code for each of their respective build scripts. For smaller models, it is fine to build the engine on the fly in container; however, for larger engines it is recommended to pre-build and mount a directory with the engine because engine files are quite large and take time to repeatedly build. Additionally, built engines can be used for input lengths, output lengths, and batch sizes up to their build options meaning you can use an engine to benchmark multiple input configurations.

In order to benchmark the various networks, our engine building scheme is as follows:

  • For the GPT-J, Llama2-7b, and Llama2-70b benchmarks were ran using a single-setting engine build for each network configured for our maximum expected throughput.

  • For Falcon-180B, where memory limits and model size have a higher impact for running the model, our benchmarks transition to a per-configuration engine build.

Below we document how to benchmark each model on an H100-HBM3-80GB system and reproduce the throughput numbers we document on our [Performance section](#performance of-tensorrt-llm).

Running on A100

To run the benchmarks below on A100, you will need to remove the below fp8 quantization field from each config json file, because FP8 computation is a feature in H100 and newer GPUs.

"quantization": {
	"quant_algo": "FP8",
	"kv_cache_quant_algo": "FP8"
}

Reproducing First Token Latency

In order to test the latency to the first token, you can build the engines as specified below (or with the tweaks specified above on A100) – once built as described in the build steps above, you can then benchmark with a single output token in order to find the time to first token latency. We provide the appropriate command lines below for each of the benchmarked models, but you can use this same method to benchmark other models available in TensorRT-LLM.

Benchmarking per Model

[!WARNING] In some cases, using Group Query Attention (GQA) can improve performance of some networks. These kernels are currently experimental and not enabled by default. In order to enable them, simply run export TRTLLM_ENABLE_XQA=1 in your shell. The kernels are an inference runtime optimization, so previously built engines should still function. For the benchmarks below, we have enabled GQA where our tests displayed performance benefits. If your network is not listed below, be sure to try both GQA-enabled and GQA-disabled configurations to find the configuration that works best. For more details see our documentation about GPT Attention.

GPT-J 6B


Prepare a config json file /tmp/engines/gptj/ckpt_config.json:

{
    "architecture": "GPTJForCausalLM",
    "dtype": "float16",
    "num_hidden_layers": 28,
    "num_attention_heads": 16,
    "hidden_size": 4096,
    "norm_epsilon": 1e-05,
    "vocab_size": 50400,
    "position_embedding_type": "rope_gptj",
    "max_position_embeddings": 2048,
    "hidden_act": "gelu",
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    },
    "rotary_dim": 64
}

Build an engine:

trtllm-build --model_config /tmp/engines/gptj/ckpt_config.json \
	--output_dir /tmp/engines/gptj \
	--context_fmha enable \
	--gpt_attention_plugin float16 \
	--max_batch_size 64 \
	--max_input_len 2048 \
	--max_output_len 2048 \
	--strongly_typed

Throughput Benchmark

in_out_sizes=("64:128,128" "64:128,2048" "64:2048,128" "64:2048,2048")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --model gptj --engine_dir /tmp/engines/gptj/ --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

First Token Latency Benchmark

in_out_sizes=("64:128,1" "64:2048,1")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --model gptj --engine_dir /tmp/engines/gptj/ --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

Llama2-7b


Prepare a config json file /tmp/engines/llama/7b/ckpt_config.json:

{
    "architecture": "LlamaForCausalLM",
    "dtype": "float16",
    "num_hidden_layers": 32,
    "num_attention_heads": 32,
    "hidden_size": 4096,
    "intermediate_size": 11008,
    "num_key_value_heads": 32,
    "vocab_size": 32000,
    "position_embedding_type": "rope_gpt_neox",
    "max_position_embeddings": 4096,
    "hidden_act": "silu",
    "rotary_base": 10000.0,
    "rotary_scaling": null,
    "norm_epsilon": 1e-05,
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    }
}

Build an engine:

pip install -r examples/llama/requirements.txt
trtllm-build --model_config /tmp/engines/llama/7b/ckpt_config.json \
	--output_dir /tmp/engines/llama/7b \
	--remove_input_padding enable \
	--context_fmha enable \
	--gpt_attention_plugin float16 \
	--max_batch_size 64 \
	--max_input_len 2048 \
	--max_output_len 2048 \
	--strongly_typed

Throughput Benchmark

in_out_sizes=("64:128,128" "64:128,2048" "64:2048,128" "32:2048,2048")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --model llama --engine_dir /tmp/engines/llama/7b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

First Token Latency Benchmark

in_out_sizes=("64:128,1" "32:2048,1")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --model llama --engine_dir /tmp/engines/llama/7b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

Llama2-70b


Prepare a config json file /tmp/engines/llama/70b/ckpt_config.json:

{
    "architecture": "LlamaForCausalLM",
    "dtype": "float16",
    "num_hidden_layers": 80,
    "num_attention_heads": 64,
    "hidden_size": 8192,
    "intermediate_size": 28672,
    "num_key_value_heads": 8,
    "vocab_size": 32000,
    "position_embedding_type": "rope_gpt_neox",
    "max_position_embeddings": 4096,
    "hidden_act": "silu",
    "rotary_base": 10000.0,
    "rotary_scaling": null,
    "norm_epsilon": 1e-05,
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    },
    "mapping": {
        "world_size": 4,
        "tp_size": 4,
        "pp_size": 1
    }
}

Build an engine:

pip install -r examples/llama/requirements.txt
trtllm-build --model_config /tmp/engines/llama/70b/ckpt_config.json \
	--output_dir /tmp/engines/llama/70b \
	--workers 4 \
	--remove_input_padding enable \
	--context_fmha enable \
	--gpt_attention_plugin float16 \
	--max_batch_size 64 \
	--max_input_len 2048 \
	--max_output_len 2048 \
	--strongly_typed

Throughput Benchmark

export TRTLLM_ENABLE_XQA=1
in_out_sizes=("64:128,128" "64:128,2048" "64:2048,128" "64:2048,2048")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	mpirun -n 4 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --model llama --engine_dir /tmp/engines/llama/70b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

First Token Latency Benchmark

export TRTLLM_ENABLE_XQA=1
in_out_sizes=("64:128,1" "64:128,1")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	mpirun -n 4 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --model llama --engine_dir /tmp/engines/llama/70b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

Falcon-180B


Benchmarking Falcon-180B requires a custom engine per batch size, input/output sequence length due to the large footprint of the model and the large input size of 2048. You can build and benchmark each engine one at a time with the following loop.

Prepare a config json file /tmp/engines/falcon/180b/ckpt_config.json:

{
    "architecture": "FalconForCausalLM",
    "dtype": "bfloat16",
    "num_hidden_layers": 80,
    "num_attention_heads": 232,
    "num_key_value_heads": 8,
    "hidden_size": 14848,
    "norm_epsilon": 1e-05,
    "vocab_size": 65024,
    "position_embedding_type": "rope_gpt_neox",
    "max_position_embeddings": 2048,
    "hidden_act": "gelu",
    "use_parallel_embedding": false,
    "embedding_sharding_dim": 0,
    "share_embedding_table": false,
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    },
    "mapping": {
        "world_size": 8,
        "tp_size": 8,
        "pp_size": 1
    },
    "bias": false,
    "parallel_attention": true,
    "new_decoder_architecture": true
}
export TRTLLM_ENABLE_XQA=1
# Benchmark specific batch size:isl:osl combinations.
in_out_sizes=("96:128,128" "96:128,2048" "64:2048,128")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	isl=$(echo $in_out_dims | awk -F',' '{ print $1 }')
	osl=$(echo $in_out_dims | awk -F',' '{ print $2 }')
	engine_path="/tmp/engines/falcon/180b/${batch_size}_${isl}_${osl}"
	echo "BS: $batch_size, ISL/OSL: ${isl},${osl}"

	# Build the specific engine for the BS,ISL,OSL combination
	trtllm-build --model_config /tmp/engines/falcon/180b/ckpt_config.json \
		--output_dir $engine_path \
		--workers 8 \
		--remove_input_padding enable \
		--context_fmha enable \
		--gpt_attention_plugin bfloat16 \
		--gemm_plugin bfloat16 \
		--paged_kv_cache enable \
		--max_batch_size $batch_size \
		--max_input_len $isl \
		--max_output_len $osl \
		--strongly_typed

	# Throughput benchmark
	mpirun -n 8 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --model falcon --engine_dir $engine_path --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len "${isl},${osl}"
	# Time to first token benchmark
	mpirun -n 8 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --model falcon --engine_dir $engine_path --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len "${isl},1"

	# The Falcon-180b engine is quite large, remove after the benchmark to free up space
	# Remove this line if you'd like to save the engines.
	rm -r $engine_path
done