/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #ifdef ENABLE_FP8 #include #endif #include "selectiveScan.h" #include "CudaType.h" #include "bmmchunk.h" #include "chunkcumsum.h" #include "chunkscan.h" #include "chunkstate.h" #include "statepassing.h" namespace tensorrt_llm { namespace kernels { __device__ float toFloat(float f) { return f; } __device__ float toFloat(__half h) { return __half2float(h); } #ifdef ENABLE_BF16 __device__ float toFloat(__nv_bfloat16 val) { return __bfloat162float(val); } #endif __device__ void convertAndStore(float* output, float input) { *output = input; } __device__ void convertAndStore(__half* output, float input) { *output = __float2half(input); } #ifdef ENABLE_BF16 __device__ void convertAndStore(__nv_bfloat16* output, float input) { *output = __float2bfloat16(input); } #endif #pragma nv_diag_suppress static_var_with_dynamic_init template __launch_bounds__(256, 1) __global__ void selective_scan_loop_kernel(SSMParamsBase params) { input_t* output = reinterpret_cast(params.out_ptr); input_t* state = reinterpret_cast(params.x_ptr); input_t* x = reinterpret_cast(params.u_ptr); input_t* dt = reinterpret_cast(params.delta_ptr); weight_t* A = reinterpret_cast(params.A_ptr); input_t* B = reinterpret_cast(params.BC_ptr); input_t* C = reinterpret_cast(params.BC_ptr); weight_t* D = reinterpret_cast(params.D_ptr); input_t* z = reinterpret_cast(params.z_ptr); weight_t* dt_bias = reinterpret_cast(params.delta_bias_ptr); bool dt_softplus = params.delta_softplus; int num_channels = params.dim; __shared__ cuda::pipeline_shared_state pipeline_state; auto block = cooperative_groups::this_thread_block(); __shared__ __align__(16) input_t sh_B[STAGES][DSTATE]; __shared__ __align__(16) input_t sh_C[STAGES][DSTATE]; __shared__ __align__(128) input_t sh_dt[STAGES][CHANNELS_PER_BLOCK]; __shared__ input_t sh_x[STAGES][CHANNELS_PER_BLOCK]; __shared__ input_t sh_z[STAGES][CHANNELS_PER_BLOCK]; int const channel = blockIdx.x * blockDim.x + threadIdx.x; int const sample = blockIdx.y; // batch id int const slot_idx = params.slot_mapping_ptr == nullptr ? sample : params.slot_mapping_ptr[sample]; int const bc_cols = DSTATE * 2 + params.dt_rank; int const b_offset = params.dt_rank; int const c_offset = params.dt_rank + DSTATE; int num_tokens; int start_token_idx; if (params.remove_padding) { start_token_idx = sample == 0 ? 0 : params.last_token_ids_ptr[sample - 1]; int end_token_idx = params.last_token_ids_ptr[sample]; num_tokens = end_token_idx - start_token_idx; } else { start_token_idx = sample * params.max_seqlen; num_tokens = params.last_token_ids_ptr[sample]; } int const seq_loops = (num_tokens + SEQ_UNROLL - 1) / SEQ_UNROLL; int const input_matrix_row_id = start_token_idx; if (threadIdx.y == 1) { cuda::pipeline pipeline = cuda::make_pipeline(block, &pipeline_state, cuda::pipeline_role::producer); int stage = 0; for (int si = 0; si < seq_loops; si++) { pipeline.producer_acquire(); #pragma unroll for (int token_id = si * SEQ_UNROLL; token_id < num_tokens && token_id < (si + 1) * SEQ_UNROLL; token_id++) { input_t* my_B = &B[(input_matrix_row_id + token_id) * bc_cols + b_offset]; input_t* my_C = &C[(input_matrix_row_id + token_id) * bc_cols + c_offset]; int block_channel_per_token = blockIdx.x * blockDim.x; int block_channel = input_matrix_row_id * num_channels + token_id * num_channels + block_channel_per_token; if (threadIdx.x < DSTATE) cuda::memcpy_async(&sh_B[stage][threadIdx.x], &my_B[threadIdx.x], sizeof(input_t), pipeline); else if (threadIdx.x >= 32 && threadIdx.x < 32 + DSTATE) cuda::memcpy_async( &sh_C[stage][threadIdx.x - 32], &my_C[threadIdx.x - 32], sizeof(input_t), pipeline); if (sizeof(input_t) == 4) { cuda::memcpy_async(&sh_dt[stage][threadIdx.x], &dt[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t), pipeline); cuda::memcpy_async(&sh_x[stage][threadIdx.x], &x[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t), pipeline); if (z) cuda::memcpy_async(&sh_z[stage][threadIdx.x], &z[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t), pipeline); } else { // sh_dt[stage][threadIdx.x] = dt[block_channel + threadIdx.x]; if (threadIdx.x < 32) { int tid = threadIdx.x; float2* block_dt = (float2*) &dt[block_channel]; cuda::memcpy_async((float2*) &sh_dt[stage][tid * 4], &block_dt[tid], sizeof(float2), pipeline); } // sh_x[stage][threadIdx.x] = x[block_channel + threadIdx.x]; else if (threadIdx.x < 64) { int tid = threadIdx.x - 32; float2* block_x = (float2*) &x[block_channel]; cuda::memcpy_async((float2*) &sh_x[stage][tid * 4], &block_x[tid], sizeof(float2), pipeline); } // sh_z[stage][threadIdx.x] = z[block_channel + threadIdx.x]; else if (threadIdx.x < 96) { int tid = threadIdx.x - 64; if (z) { float2* block_z = (float2*) &z[block_channel]; cuda::memcpy_async( (float2*) &sh_z[stage][tid * 4], &block_z[tid], sizeof(float2), pipeline); } } else { } } stage++; if (stage >= STAGES) stage = 0; } pipeline.producer_commit(); } } else { // Compute warps // Load state and A matrix into registers float state_reg[DSTATE]; float A_reg[DSTATE]; for (int i = 0; i < DSTATE; i++) { state_reg[i] = 0.f; A_reg[i] = toFloat(A[i * num_channels + channel]); } float dt_bias_reg = dt_bias[channel]; float D_reg = D ? D[channel] : 0.f; cuda::pipeline pipeline = cuda::make_pipeline(block, &pipeline_state, cuda::pipeline_role::consumer); int stage = 0; for (int si = 0; si < seq_loops; si++) { pipeline.consumer_wait(); #pragma unroll for (int token_id = si * SEQ_UNROLL; token_id < num_tokens && token_id < (si + 1) * SEQ_UNROLL; token_id++) { float dt_b = toFloat(sh_dt[stage][threadIdx.x]) + dt_bias_reg; float dt_b_sp; if (dt_softplus) { dt_b_sp = dt_b <= 20.f ? __logf(1.f + __expf(dt_b)) : dt_b; // softplus } float my_x = toFloat(sh_x[stage][threadIdx.x]); float Dx = my_x * D_reg; float dtx = dt_b_sp * my_x; float my_z = z ? toFloat(sh_z[stage][threadIdx.x]) : 0.f; float out = Dx; if (sizeof(input_t) == 4) { float4* B4 = (float4*) &sh_B[stage][0]; float4* C4 = (float4*) &sh_C[stage][0]; #pragma unroll for (int i = 0; i < DSTATE / 4; i++) { float4 Bi4 = B4[i]; float4 Ci4 = C4[i]; float* Bi = (float*) &Bi4; float* Ci = (float*) &Ci4; #pragma unroll for (int j = 0; j < 4; j++) { float dtA = A_reg[i * 4 + j] * dt_b_sp; float dA = __expf(dtA); float sdA = state_reg[i * 4 + j] * dA; float dBx = Bi[j] * dtx; float newState = sdA + dBx; state_reg[i * 4 + j] = newState; out += newState * Ci[j]; } } } else { float4* B8 = (float4*) &sh_B[stage][0]; float4* C8 = (float4*) &sh_C[stage][0]; #pragma unroll for (int i = 0; i < DSTATE / 8; i++) { input_t* Bi = (input_t*) (&B8[i]); input_t* Ci = (input_t*) (&C8[i]); #pragma unroll for (int j = 0; j < 8; j++) { float dtA = A_reg[i * 8 + j] * dt_b_sp; float dA = __expf(dtA); float sdA = state_reg[i * 8 + j] * dA; float dBx = toFloat(Bi[j]) * dtx; float newState = sdA + dBx; state_reg[i * 8 + j] = newState; out += newState * toFloat(Ci[j]); } } } if (z) { float enz = __expf(0.f - my_z); enz += 1.0; float sig_z = __fdividef(1.f, enz); float silu_z = my_z * sig_z; out *= silu_z; } input_t* my_output = &output[input_matrix_row_id * num_channels + token_id * num_channels]; convertAndStore(&my_output[channel], out); stage++; if (stage >= STAGES) stage = 0; } pipeline.consumer_release(); } // Write the new state back out to the cache for (int i = 0; i < DSTATE; i++) { input_t* my_state = &state[slot_idx * num_channels * DSTATE]; int offset = i * num_channels + channel; convertAndStore(&my_state[offset], state_reg[i]); } } } template void invokeSelectiveScan(SSMParamsBase& params, cudaStream_t stream) { int samples = params.batch; int channels = params.dim; TLLM_CHECK(params.dstate == 16); int const threads = 128; int const blocks = (channels + threads - 1) / threads; dim3 block(threads, 2); dim3 grid(blocks, samples); TLLM_CHECK((channels % block.x) == 0); selective_scan_loop_kernel<<>>(params); } template void invokeChunkScan(SSMParamsBase& params, cudaStream_t stream, tensorrt_llm::common::CUDADriverWrapper* driver) { int B = params.batch; int L = params.max_seqlen; int H = params.nheads; int P = params.dim / H; int G = params.ngroups; int N = params.dstate; int Q = params.chunk_size; int numTokens = params.num_tokens; bool dtsp = params.delta_softplus; bool hopper = tensorrt_llm::common::getSMVersion() >= 90 && tensorrt_llm::common::getSMVersion() < 100; CudaType tp, wt; if (std::is_same_v) tp = CT_FP16; else if (std::is_same_v) tp = CT_BF16; else return; if (std::is_same_v) wt = CT_FP32; else if (std::is_same_v) wt = tp; else return; dim3 bds[5], tds[5]; int shms[5], useTmas[5]; CUtensorMap descs_host[8]; ChunkCumsumKernelFunc chunk_cumsum = getChunkCumsumKernel(B, L, H, P, G, N, Q, numTokens, &bds[0], &tds[0], &shms[0], tp, wt); ChunkStateKernelFunc chunk_state = getChunkStateKernel( B, L, H, P, G, N, Q, numTokens, hopper, driver, &bds[1], &tds[1], &shms[1], &useTmas[1], &descs_host[0], tp); StatePassingKernelFunc state_passing = getStatePassingKernel(B, L, H, P, G, N, Q, numTokens, &bds[2], &tds[2], &shms[2], tp); BmmChunkKernelFunc bmm_chunk = getBmmChunkKernel( B, L, H, P, G, N, Q, numTokens, hopper, driver, &bds[3], &tds[3], &shms[3], &useTmas[3], &descs_host[2], tp); ChunkScanKernelFunc chunk_scan = getChunkScanKernel(B, L, H, P, G, N, Q, numTokens, hopper, driver, &bds[4], &tds[4], &shms[4], &useTmas[4], &descs_host[4], tp, wt); void* mxY = params.out_ptr; void* mxOs = params.Os_ptr; void* mxFs = params.x_ptr; void* mxSt = params.St_ptr; void* mxdc = params.dc_ptr; void* mxdA = params.dA_ptr; void const* mxdt = params.delta_ptr; void const* mxdb = params.delta_bias_ptr; void const* mxA = params.A_ptr; void* mxCB = params.CB_ptr; void const* mxD = params.D_ptr; void const* mxXBC = params.u_ptr; void const* mxZ = params.z_ptr; if (useTmas[1] || useTmas[3] || useTmas[4]) { // chunk_state *(void**) &descs_host[0] = (input_t*) mxXBC + H * P; // B *(void**) &descs_host[1] = (input_t*) mxXBC; // X // bmm_chunk *(void**) &descs_host[2] = (input_t*) mxXBC + H * P + G * N; // C *(void**) &descs_host[3] = (input_t*) mxXBC + H * P; // B // chunk_scan *(void**) &descs_host[4] = (input_t*) mxXBC + H * P + G * N; // C *(void**) &descs_host[5] = (input_t*) mxOs; *(void**) &descs_host[6] = (input_t*) mxCB; *(void**) &descs_host[7] = (input_t*) mxXBC; // X cudaMemcpyAsync(params.desc_ptr, descs_host, sizeof(CUtensorMap) * 8, cudaMemcpyHostToDevice, stream); cudaStreamSynchronize(stream); // to assure cudaMemcpyAsync is finished } CUtensorMap* descs = (CUtensorMap*) params.desc_ptr; auto rp = params.remove_padding; auto ltip = params.last_token_ids_ptr; auto ssmp = params.slot_mapping_ptr; cudaFuncSetAttribute(chunk_cumsum, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[0]); chunk_cumsum<<>>( B, L, H, P, G, N, mxdc, mxdA, mxdt, mxdb, mxA, mxZ, rp, ltip, dtsp); cudaFuncSetAttribute(chunk_state, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[1]); chunk_state<<>>( B, L, H, P, G, N, mxSt, mxdc, mxdA, (useTmas[1] ? &descs[0] : mxXBC), rp, ltip); cudaFuncSetAttribute(state_passing, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[2]); state_passing<<>>(B, L, H, P, G, N, mxOs, mxFs, mxSt, mxdA, rp, ltip, ssmp); cudaFuncSetAttribute(bmm_chunk, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[3]); bmm_chunk<<>>(B, L, H, P, G, N, mxCB, (useTmas[3] ? &descs[2] : mxXBC), rp, ltip); cudaFuncSetAttribute(chunk_scan, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[4]); chunk_scan<<>>( B, L, H, P, G, N, mxY, mxOs, mxdc, mxdA, mxCB, mxD, (useTmas[4] ? &descs[4] : mxXBC), mxZ, rp, ltip); } #define INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(input_t, weight_t) \ template void invokeSelectiveScan(SSMParamsBase & params, cudaStream_t stream); INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(float, float); INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(half, float); #ifdef ENABLE_BF16 INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(__nv_bfloat16, float); #endif #undef INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE #define INSTANTIATE_CHUNK_SCAN_DATA_TYPE(input_t, weight_t) \ template void invokeChunkScan( \ SSMParamsBase & params, cudaStream_t stream, tensorrt_llm::common::CUDADriverWrapper * driver); INSTANTIATE_CHUNK_SCAN_DATA_TYPE(float, float); INSTANTIATE_CHUNK_SCAN_DATA_TYPE(half, float); #ifdef ENABLE_BF16 INSTANTIATE_CHUNK_SCAN_DATA_TYPE(__nv_bfloat16, float); #endif #undef INSTANTIATE_CHUNK_SCAN_DATA_TYPE //////////////////////////////////////////////////////////////////////////////////////////////////// template __launch_bounds__(128, 2) __global__ void selective_scan_update_kernel(SSMParamsBase params) { input_t* output = reinterpret_cast(params.out_ptr); input_t* state = reinterpret_cast(params.x_ptr); input_t* x = reinterpret_cast(params.u_ptr); input_t* dt = reinterpret_cast(params.delta_ptr); weight_t* A = reinterpret_cast(params.A_ptr); input_t* B = reinterpret_cast(params.BC_ptr); input_t* C = reinterpret_cast(params.BC_ptr); weight_t* D = reinterpret_cast(params.D_ptr); input_t* z = reinterpret_cast(params.z_ptr); weight_t* dt_bias = reinterpret_cast(params.delta_bias_ptr); bool dt_softplus = params.delta_softplus; int num_channels = params.dim; int nheads = params.nheads; int ngroups = params.ngroups; int const channel = blockIdx.x * blockDim.x + threadIdx.x; if (channel >= num_channels) return; int const sample = blockIdx.y; int const head_dim = num_channels / nheads; int const head = channel / head_dim; int const head_chl = channel % head_dim; int const group = head / (nheads / ngroups); int const slot_idx = params.slot_mapping_ptr == nullptr ? sample : params.slot_mapping_ptr[sample]; int const dt_d_idx = MAMBA_V1 ? channel : head; int const bc_dim = MAMBA_V1 ? 2 * DSTATE : 2 * ngroups * params.dstate; int const x_dim = MAMBA_V1 ? num_channels : num_channels + bc_dim; int const z_dim = MAMBA_V1 ? num_channels : 2 * num_channels + bc_dim + (nheads + 7) / 8 * 8; int const dt_dim = MAMBA_V1 ? num_channels : (z ? z_dim : z_dim - num_channels); int const dt_offset = MAMBA_V1 ? sample * dt_dim : sample * dt_dim + dt_dim - (nheads + 7) / 8 * 8; int const bc_offset = MAMBA_V1 ? sample * (bc_dim + params.dt_rank) : sample * (num_channels + bc_dim); int const b_offset = MAMBA_V1 ? params.dt_rank : num_channels + params.dstate * group; int const c_offset = MAMBA_V1 ? params.dt_rank + DSTATE : num_channels + params.dstate * (ngroups + group); input_t* my_state = &state[slot_idx * num_channels * (MAMBA_V1 ? DSTATE : params.dstate)]; input_t* my_output = &output[sample * num_channels]; int const state_loops = ((MAMBA_V1 ? DSTATE : params.dstate) + STATE_UNROLL - 1) / STATE_UNROLL; float my_x, my_dt, my_z, my_dt_bias, out; my_x = toFloat(x[sample * x_dim + channel]); my_z = z ? toFloat(z[sample * z_dim + channel]) : 0.f; my_dt = toFloat(dt[dt_offset + dt_d_idx]); my_dt_bias = dt_bias ? toFloat(dt_bias[dt_d_idx]) : 0.f; out = D ? toFloat(D[dt_d_idx]) * my_x : 0.f; float dt_b = my_dt + my_dt_bias; float dt_b_sp = 1.0f; if (dt_softplus) { dt_b_sp = dt_b <= 20.f ? __logf(1.f + __expf(dt_b)) : dt_b; // softplus } if (MAMBA_V1) { float rA[DSTATE]; float rB[DSTATE]; float rC[DSTATE]; float rState[DSTATE]; #pragma unroll for (int i = 0; i < DSTATE; i++) { rA[i] = toFloat(A[i * num_channels + channel]); rB[i] = toFloat(B[bc_offset + b_offset + i]); rC[i] = toFloat(C[bc_offset + c_offset + i]); rState[i] = toFloat(my_state[i * num_channels + channel]); } #pragma unroll for (int i = 0; i < DSTATE; i++) { float dA = __expf(rA[i] * dt_b_sp); float dB = rB[i] * dt_b_sp; float sdA = rState[i] * dA; float dBx = dB * my_x; float newState = sdA + dBx; // Write the new state back out to the cache convertAndStore(&my_state[i * num_channels + channel], newState); out += newState * rC[i]; } } else { float A_tmp = toFloat(A[head]); float rB[STATE_UNROLL]; float rC[STATE_UNROLL]; float rState[STATE_UNROLL]; for (int si = 0; si < state_loops; si++) { int i_offset = si * STATE_UNROLL; #pragma unroll for (int i = 0; i < STATE_UNROLL; i++) { rB[i] = toFloat(B[bc_offset + b_offset + i_offset + i]); rC[i] = toFloat(C[bc_offset + c_offset + i_offset + i]); rState[i] = toFloat( my_state[(head * (MAMBA_V1 ? DSTATE : params.dstate) + i_offset + i) * head_dim + head_chl]); } #pragma unroll for (int i = 0; i < STATE_UNROLL; i++) { float dA = __expf(A_tmp * dt_b_sp); float dB = rB[i] * dt_b_sp; float sdA = rState[i] * dA; float dBx = dB * my_x; float newState = sdA + dBx; // Write the new state back out to the cache convertAndStore( &my_state[(head * (MAMBA_V1 ? DSTATE : params.dstate) + i_offset + i) * head_dim + head_chl], newState); out += newState * rC[i]; } } } if (z) { float sig_z = __fdividef(1.f, (1.f + __expf(0.f - my_z))); float silu_z = my_z * sig_z; out *= silu_z; } convertAndStore(&my_output[channel], out); } template void invokeSelectiveScanUpdate(SSMParamsBase& params, cudaStream_t stream) { int samples = params.batch; int channels = params.dim; int nheads = params.nheads; int ngroups = params.ngroups; int const threads = 128; int const blocks = (channels + threads - 1) / threads; dim3 block(threads, 1); dim3 grid(blocks, samples); TLLM_CHECK_WITH_INFO(nheads % ngroups == 0, "nheads must be divisible by ngroups"); if (params.is_mamba2) { TLLM_CHECK(params.dstate % 16 == 0); selective_scan_update_kernel<<>>(params); } else { TLLM_CHECK(params.dstate == 16); selective_scan_update_kernel<<>>(params); } } #define INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(input_t, weight_t) \ template void invokeSelectiveScanUpdate(SSMParamsBase & params, cudaStream_t stream) INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(float, float); INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(half, float); #ifdef ENABLE_BF16 INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(__nv_bfloat16, float); #endif #undef INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE } // namespace kernels } // namespace tensorrt_llm