# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import numpy as np from ..._common import default_net from ..._utils import pad_vocab_size from ...functional import (Tensor, concat, constant, expand, op_and, recv, send, shape, slice, unsqueeze, where) from ...layers import (AttentionMaskType, CogVLMAttention, ColumnLinear, Embedding, GatedMLP, PromptTuningEmbedding, RmsNorm) from ...mapping import Mapping from ...module import Module # this is to use to module global algo string with a quant_algo prefix from ...quantization import QuantMode from ...top_model_mixin import TopModelMixin from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, QuantConfig) from .config import CogVLMConfig class CogvlmDecoderLayer(Module): def __init__(self, config: CogVLMConfig, layer_idx: int): super().__init__() self.layer_idx = layer_idx self.config = config self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) layers_range = config.mapping.pp_layers(config.num_hidden_layers) local_layer_idx = layer_idx - layers_range[0] self.attention = CogVLMAttention( local_layer_idx=local_layer_idx, hidden_size=config.hidden_size, num_attention_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, max_position_embeddings=config.max_position_embeddings, dtype=config.dtype, attention_mask_type=AttentionMaskType.causal, bias=config.attn_bias, position_embedding_type=config.position_embedding_type, rotary_embedding_base=config.rotary_base, rotary_embedding_scaling=config.rotary_scaling, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, tp_rank=config.mapping.tp_rank, quant_mode=config.quant_mode) mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size self.hidden_size = config.hidden_size self.mlp = GatedMLP(hidden_size=config.hidden_size, ffn_hidden_size=mlp_hidden_size, hidden_act=config.hidden_act, dtype=config.dtype, bias=config.mlp_bias, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, quant_mode=config.quant_mode) self.vis_mlp = GatedMLP(hidden_size=config.hidden_size, ffn_hidden_size=mlp_hidden_size, hidden_act=config.hidden_act, dtype=config.dtype, bias=config.mlp_bias, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, quant_mode=config.quant_mode) self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) def forward( self, hidden_states, attention_mask=None, use_cache=False, kv_cache_params=None, attention_params=None, lora_layer_params=None, vision_token_mask=None, position_ids=None, ): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) attention_output = self.attention(hidden_states, use_cache=use_cache, kv_cache_params=kv_cache_params, attention_params=attention_params, vision_token_mask=vision_token_mask, position_embedding=position_ids) if use_cache: attention_output, presents = attention_output hidden_states = residual + attention_output residual = hidden_states hidden_states = self.post_layernorm(hidden_states) vision_mlp_out = self.vis_mlp(hidden_states) language_mlp_out = self.mlp(hidden_states) hidden_states = where(vision_token_mask, vision_mlp_out, language_mlp_out) # hidden_states = self.mlp(hidden_states, # lora_layer_params=lora_layer_params) hidden_states = residual + hidden_states if use_cache: return (hidden_states, presents) return hidden_states class CogvlmModel(Module): def __init__(self, config: CogVLMConfig) -> None: super().__init__() self.mapping = config.mapping self.use_prompt_tuning = config.use_prompt_tuning self.vocab_size = config.vocab_size EmbeddingCls = PromptTuningEmbedding if config.use_prompt_tuning else Embedding if self.mapping.is_first_pp_rank(): self.vocab_embedding = EmbeddingCls( num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, dtype=config.dtype, tp_size=self.mapping.tp_size if config.use_parallel_embedding else 1, tp_group=self.mapping.tp_group if config.use_parallel_embedding else None, sharding_dim=config.embedding_sharding_dim, tp_rank=self.mapping.tp_rank, ) self.layers = DecoderLayerList(CogvlmDecoderLayer, config) if self.mapping.is_last_pp_rank(): self.ln_f = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) def forward(self, input_ids, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, hidden_states=None, prompt_embedding_table: Optional[Tensor] = None, prompt_tasks: Optional[Tensor] = None, prompt_vocab_size: Optional[Tensor] = None, lora_params=None): kv_cache_params.fill_none_tensor_list(len(self.layers)) if use_cache: presents = [] ptuning_args = [ prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if self.use_prompt_tuning else [] if self.mapping.is_first_pp_rank(): hidden_states = self.vocab_embedding(input_ids, *ptuning_args) else: hidden_states = recv(hidden_states, self.mapping.prev_pp_rank()) vision_mask = input_ids > (self.vocab_size - 1) if default_net().plugin_config.remove_input_padding: seq_length = shape(vision_mask, 0) # lvvvvvvllvvvvlll zero = constant(np.ascontiguousarray(np.zeros([1], dtype=bool))) one = constant(np.ascontiguousarray(np.ones([1], dtype=bool))) t1 = slice(vision_mask, [0], seq_length - 1) t2 = slice(vision_mask, [1], seq_length - 1) vision_token_mask = concat([op_and(t1 == one, t2 == one), zero]) # 0111110001110000 vision_token_mask = unsqueeze(vision_token_mask, -1) # [num_tokens, 1] else: seq_length = shape(vision_mask, 1) # lvvvvvvllvvvvlll, lvvvvvvllvvvvlll batch_size = shape(vision_mask, 0) t1 = slice(vision_mask, [0, 0], concat([batch_size, seq_length - 1])) t2 = slice(vision_mask, [0, 1], concat([batch_size, seq_length - 1])) zero = expand( constant(np.ascontiguousarray(np.zeros([1, 1], dtype=bool))), concat([batch_size, 1])) one = constant(np.ascontiguousarray(np.ones([1, 1], dtype=bool))) vision_token_mask = concat([op_and(t1 == one, t2 == one), zero], dim=1) # 0111110001110000 [bs, seqlen] vision_token_mask = unsqueeze(vision_token_mask, -1) # [bs, seqlen, 1] hidden_states = self.layers.forward(hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, lora_params=lora_params, vision_token_mask=vision_token_mask, position_ids=position_ids) if use_cache: hidden_states, presents = hidden_states if self.mapping.is_last_pp_rank(): hidden_states = self.ln_f(hidden_states) else: hidden_states = send(hidden_states, self.mapping.next_pp_rank()) if use_cache: return (hidden_states, tuple(presents)) return hidden_states class CogVLMForCausalLM(DecoderModelForCausalLM, TopModelMixin): config_class = CogVLMConfig def __init__(self, config: CogVLMConfig): transformer = CogvlmModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) if config.mapping.is_last_pp_rank(): lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) else: lm_head = None self.quant_mode = config.quant_mode self.mapping = config.mapping super().__init__(config, transformer, lm_head) @classmethod def from_hugging_face(cls, hf_model_dir, dtype='float16', mapping: Optional[Mapping] = None, quant_mode: Optional[QuantMode] = None, **kwargs): pass def default_plugin_config(self, **kwargs): plugin_config = super().default_plugin_config(**kwargs) if self.quant_mode.is_int4_weight_only_per_group(): plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto' return plugin_config @classmethod def quantize( cls, hf_model_dir, output_dir, quant_config: QuantConfig, *, dtype='float16', mapping: Optional[Mapping] = None, calib_batches=512, calib_batch_size=1, random_seed=1234, tokenizer_max_seq_length=2048, **kwargs, ): pass