import time from typing import Dict, Optional import torch from tensorrt_llm.quantization import QuantAlgo from ..convert_utils import get_weight, get_weight_and_bias, split_matrix_tp from .config import GPTJConfig def get_tllm_linear_weight( weight: torch.Tensor, prefix: str, bias: Optional[torch.Tensor] = None, use_weight_only: bool = False, plugin_weight_only_quant_type: torch.dtype = torch.int8 ) -> Dict[str, torch.Tensor]: results = {} if use_weight_only: v = weight.t().contiguous() processed_torch_weights, torch_weight_scales = \ torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix( v, plugin_weight_only_quant_type) results[f'{prefix}.weight'] = processed_torch_weights results[f'{prefix}.per_channel_scale'] = torch_weight_scales else: results[f'{prefix}.weight'] = weight.contiguous() if bias is not None: results[f'{prefix}.bias'] = bias return results def get_tllm_param( param: torch.Tensor, name: str, use_weight_only: bool = False, plugin_weight_only_quant_type: torch.dtype = torch.int8 ) -> Dict[str, torch.Tensor]: results = {} if name.endswith('.weight') and use_weight_only: v = param.t().contiguous() processed_torch_weights, torch_weight_scales = \ torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix( v, plugin_weight_only_quant_type) results[name] = processed_torch_weights results[name.replace('weight', 'per_channel_scale')] = torch_weight_scales else: results[name] = param return results def load_weights_from_hf_model(hf_model, config: GPTJConfig): quant_algo = config.quantization.quant_algo use_weight_only = quant_algo in [QuantAlgo.W8A16, QuantAlgo.W4A16] if quant_algo == QuantAlgo.W8A16: plugin_weight_only_quant_type = torch.int8 elif quant_algo == QuantAlgo.W4A16: plugin_weight_only_quant_type = torch.quint4x2 else: plugin_weight_only_quant_type = None weights = {} tik = time.time() model_params = dict(hf_model.named_parameters()) dtype = getattr(torch, config.dtype) num_hidden_layers = config.num_hidden_layers mapping = config.mapping layers_range = mapping.pp_layers(num_hidden_layers) for l in layers_range: prefix = f'transformer.h.{l}' tllm_prex = f'transformer.layers.{l-layers_range[0]}' # Attention QKV (no bias) q_weight = get_weight(model_params, f'{prefix}.attn.q_proj', dtype) k_weight = get_weight(model_params, f'{prefix}.attn.k_proj', dtype) v_weight = get_weight(model_params, f'{prefix}.attn.v_proj', dtype) q_w = split_matrix_tp(q_weight, mapping.tp_size, mapping.tp_rank, dim=0) k_w = split_matrix_tp(k_weight, mapping.tp_size, mapping.tp_rank, dim=0) v_w = split_matrix_tp(v_weight, mapping.tp_size, mapping.tp_rank, dim=0) qkv_w = torch.concatenate([q_w, k_w, v_w], dim=0) weights.update( get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv', None, use_weight_only, plugin_weight_only_quant_type)) # Attention dense (not bias) attn_dense_weight = get_weight(model_params, f'{prefix}.attn.out_proj', dtype) attn_dense_w = split_matrix_tp(attn_dense_weight, mapping.tp_size, mapping.tp_rank, dim=1) weights.update( get_tllm_linear_weight(attn_dense_w, f'{tllm_prex}.attention.dense', None, use_weight_only, plugin_weight_only_quant_type)) # MLP fc_in (with bias) mlp_fc_weight, mlp_fc_bias = get_weight_and_bias( model_params, f'{prefix}.mlp.fc_in', dtype) mlp_fc_w = split_matrix_tp(mlp_fc_weight, mapping.tp_size, mapping.tp_rank, dim=0) mlp_fc_b = split_matrix_tp(mlp_fc_bias, mapping.tp_size, mapping.tp_rank, dim=0) weights.update( get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc', mlp_fc_b, use_weight_only, plugin_weight_only_quant_type)) # MLP fc_out (with bias) mlp_proj_weight, mlp_proj_bias = get_weight_and_bias( model_params, f'{prefix}.mlp.fc_out', dtype) mlp_proj_w = split_matrix_tp(mlp_proj_weight, mapping.tp_size, mapping.tp_rank, dim=1) # Only rank0 will get bias if mapping.tp_size > 1 and mapping.tp_rank > 0: mlp_proj_bias = torch.zeros(mlp_proj_weight.shape[0], dtype=mlp_proj_weight.dtype) weights.update( get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj', mlp_proj_bias, use_weight_only, plugin_weight_only_quant_type)) input_ln_weight, input_ln_bias = get_weight_and_bias( model_params, f'{prefix}.ln_1', dtype) weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias if mapping.is_first_pp_rank(): # Embedding embed_w = get_weight(model_params, 'transformer.wte', dtype) if config.use_parallel_embedding: embed_w = split_matrix_tp(embed_w, mapping.tp_size, mapping.tp_rank, dim=0) weights['transformer.vocab_embedding.weight'] = embed_w if mapping.is_last_pp_rank(): # lm_head weight and bias lm_head_w, ln_head_bias = get_weight_and_bias(model_params, 'lm_head', dtype) weights['lm_head.weight'] = split_matrix_tp(lm_head_w, mapping.tp_size, mapping.tp_rank, dim=0) weights['lm_head.bias'] = split_matrix_tp(ln_head_bias, mapping.tp_size, mapping.tp_rank, dim=0) ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f', dtype) # ln_f weight and bias weights['transformer.ln_f.weight'] = ln_f_w if ln_f_b is not None: weights['transformer.ln_f.bias'] = ln_f_b tok = time.time() t = time.strftime('%H:%M:%S', time.gmtime(tok - tik)) print(f'Weights loaded. Total time: {t}') return weights