# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from defs.common import (convert_weights, generate_deterministic_cmd, venv_mpi_check_call) from defs.conftest import skip_pre_hopper from defs.trt_test_alternative import check_call @skip_pre_hopper @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.parametrize("data_type", ['float16', 'bfloat16']) @pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-Instruct-v0.1'], indirect=True) def test_llm_mixtral_4gpus_deterministic(llama_example_root, llm_mixtral_model_root, deterministic_test_root, llm_venv, cmodel_dir, engine_dir, data_type): tp_size, pp_size = 4, 1 world_size = tp_size * pp_size moe_tp_size = tp_size os.environ['FORCE_DETERMINISTIC'] = "1" print("Convert checkpoint...") ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=llama_example_root, cmodel_dir=cmodel_dir, model="mixtral-instruct", model_path=llm_mixtral_model_root, tp_size=tp_size, moe_tp_size=moe_tp_size, pp_size=pp_size, data_type=data_type, workers=world_size) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--workers={world_size}", "--use_paged_context_fmha=enable", "--max_batch_size=256", "--max_num_tokens=33280", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run deterministic test...") deterministic_accuracy_threshold = 1 payload = os.path.join(deterministic_test_root, "payload.json") deterministic_cmd = generate_deterministic_cmd( deterministic_test_root, engine_dir=engine_dir, tokenizer_dir=llm_mixtral_model_root, payload=payload, deterministic_accuracy_threshold=deterministic_accuracy_threshold) venv_mpi_check_call( llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"], deterministic_cmd) os.environ.pop('FORCE_DETERMINISTIC', None)