/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/kernels/decodingCommon.h" #include namespace tensorrt_llm { namespace kernels { // We keep tracing `beam_width` beams during iterations, once a beam is finished, // we record the ids and its normed score in output_ids_tgt and normed_scores struct BeamHypotheses { // BS: batch_size // BM: beam_width // mSL: max_seq_length // %%: parameter name when we call [generation.py] dynamic_decoder.forward (python workflow) // Pointers initialized in these two functions below: // [gptDecoder.cpp] GptDecoder::forward or [dynamicDecodeOp.cpp] FtDynamicDecode::forward bool* is_done{nullptr}; // [BS] %% self.beam_hyps_is_done float* cum_log_probs{nullptr}; // [BS, BM*2] %% self.beam_hyps_cum_log_probs float* log_probs{nullptr}; // [BS, BM*2, mSL] %% self.beam_hyps_log_probs float* min_normed_scores{nullptr}; // [BS] %% self.beam_hyps_min_normed_scores float* normed_scores{nullptr}; // [BS, BM*2] %% self.beam_hyps_normed_scores int* num_beams{nullptr}; // [BS] %% self.beam_hyps_num_beams int* output_ids_tgt{nullptr}; // [BS, BM*2, mSL] %% self.beam_hyps_output_ids_tgt int* sequence_lengths_tgt{nullptr}; // [BS, BM*2] %% self.beam_hyps_sequence_lengths_tgt int const* input_lengths{nullptr}; // [BS*BM] %% context_length // Pointers initialized in [onlineBeamSearchLayer.cu] invokeSoftMax: int const* end_ids{nullptr}; // [BS*BM] %% self.end_ids FinishedState* finished; // [BS*BM] %% self.finished float* cum_log_probs_src{nullptr}; // [BS, BM] %% self.cum_log_probs float* log_probs_src{nullptr}; // [mSL, BS, BM] %% self.log_probs_tiled int* sequence_lengths_src{nullptr}; // [BS*BM] %% self.sequence_length_buffer // These two pointers are relocated in [dynamicDecodeLayer.cpp] DynamicDecodeLayer::prepareIdsPtrs int** output_ids_tgt_ptr{nullptr}; // [BS][BM, mSL] %% self.output_ids int** parent_ids_tgt_ptr{nullptr}; // [BS][BM, mSL] %% self.parent_ids float* diversity_rates{nullptr}; // [BS] from SamplingConfig float* length_penalties{nullptr}; // [BS] from SamplingConfig int* early_stoppings{nullptr}; // [BS] from SamplingConfig // Pointers for function gatherTree int const* output_ids_src{nullptr}; // int const* parent_ids_src{nullptr}; // // Scalar values bool is_return_normed_score{true}; // return normed_cum_log_probs or cum_log_probs, always be true now int batch_size{0}; // int beam_width{0}; // int ite{0}; // index of local_batch, always be 0 if pp_size==1 int local_batch_size{0}; // int max_seq_len{0}; // int step{0}; // only used in [beamSearchTopkKernels.cu], always be 0 in [onlineSoftmaxBeamsearchKernels*.cu.h] int vocab_size{0}; // vocab_size_padded }; template __device__ __forceinline__ T apply_length_penalty(T log_prob, int length, float length_penalty) { // score = log(prob) / (length ^ length_penalty) if (length_penalty == 0.0f || length == 1) { return log_prob; } return log_prob / static_cast(powf(static_cast(length), length_penalty)); } template void invokeTopkBeamSearch(void* workspace, size_t& workspace_size, T* log_probs, int* ids, BeamHypotheses* beam_hyps, bool const* finished, int const* sequence_lengths, int const batch_size, int const beam_width, int const vocab_size_padded_, const T diversity_rate, float const length_penalty, int const* end_ids, cudaStream_t stream); void invokeInsertUnfinishedPath(BeamHypotheses beam_hyps, FinishedState const* finished, float const* cum_log_probs, int const batch_size, int const beam_width, cudaStream_t stream); } // namespace kernels } // namespace tensorrt_llm