/* * Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/layers/baseBeamSearchLayer.h" #include using namespace tensorrt_llm::common; using namespace tensorrt_llm::kernels; namespace tensorrt_llm { namespace layers { __global__ void update_indir_cache_kernel(int* tgt_indir_cache, int const* src_indir_cache, int const** parent_ids, FinishedState const* finished, int const* sequence_lengths, int const* input_lengths, int batch_dim, int local_batch_size, int beam_width, int max_attention_window, int sink_token_length, int max_seq_len) { int time_step = threadIdx.x + blockIdx.x * blockDim.x; int bb_id = threadIdx.y + blockIdx.y * blockDim.y; // should be just blockIdx.y? int const current_step{sequence_lengths[bb_id] - 1}; // the sequence_lengths is updated, need to minus 1 int const input_length{input_lengths == nullptr ? 0 : input_lengths[bb_id]}; int const batch_id = bb_id / beam_width; int const beam_id = bb_id % beam_width; // Exit when the batch_beam or timestep is out of the bound. // Assume that KV Cache is shared and fixed for context part, // so we don't need to update the indices for context part. if (bb_id >= beam_width * local_batch_size || time_step >= max_seq_len || time_step < input_length || time_step < (max_seq_len - max_attention_window) || finished[bb_id].isFinished()) { return; } int time_step_circ = time_step; if (time_step_circ >= sink_token_length) { time_step_circ = sink_token_length + (time_step - sink_token_length) % (max_attention_window - sink_token_length); } // for the parent_ids, we will still keep it for all past tokens (i.e. max_seq_len) int const src_beam = parent_ids[batch_id][beam_id * max_seq_len + current_step]; // for the indir tables, we have the cyclic kv cache. const uint32_t tgt_offset = batch_id * beam_width * max_attention_window + beam_id * max_attention_window + time_step_circ; const uint32_t src_offset = batch_id * beam_width * max_attention_window + src_beam * max_attention_window + time_step_circ; tgt_indir_cache[tgt_offset] = (time_step == current_step) ? beam_id : src_indir_cache[src_offset]; } void update_indir_cache_kernelLauncher(int* tgt_indir_cache, int const* src_indir_cache, int const** parent_ids, FinishedState const* finished, int const* sequence_lengths, int const* input_lengths, int batch_dim, int local_batch_size, int beam_width, int max_seq_len, int max_attention_window, int sink_token_length, cudaStream_t stream) { const dim3 block(32); // Update indirections steps [input_length[bb_id], sequence_lengths[bb_id]], included const dim3 grid((max_seq_len + block.x - 1) / block.x, local_batch_size * beam_width); update_indir_cache_kernel<<>>(tgt_indir_cache, src_indir_cache, parent_ids, finished, sequence_lengths, input_lengths, batch_dim, local_batch_size, beam_width, max_attention_window, sink_token_length, max_seq_len); } template BaseBeamSearchLayer::BaseBeamSearchLayer(runtime::SizeType vocab_size, runtime::SizeType vocab_size_padded, cudaStream_t stream, std::shared_ptr allocator) : BaseLayer(stream, std::move(allocator), nullptr) , vocab_size_(vocab_size) , vocab_size_padded_(vocab_size_padded) { } template BaseBeamSearchLayer::BaseBeamSearchLayer(BaseBeamSearchLayer const& beam_search_layer) : BaseLayer(beam_search_layer) , vocab_size_(beam_search_layer.vocab_size_) , vocab_size_padded_(beam_search_layer.vocab_size_padded_) , topk_softmax_workspace_size_(beam_search_layer.topk_softmax_workspace_size_) { } template BaseBeamSearchLayer::~BaseBeamSearchLayer() { TLLM_LOG_TRACE(__PRETTY_FUNCTION__); freeBuffer(); } template void BaseBeamSearchLayer::freeBuffer() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); if (mIsAllocateBuffer) { mIsAllocateBuffer = false; } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BaseBeamSearchLayer::allocateBuffer(runtime::SizeType batch_size) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); mIsAllocateBuffer = true; TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BaseBeamSearchLayer::setupBase(runtime::SizeType batch_size, SetupParams const& setupParams) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); allocateBuffer(batch_size); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void BaseBeamSearchLayer::forward(BeamSearchOutputParams& outputs, ForwardParams const& params) { TLLM_LOG_TRACE("%s", __PRETTY_FUNCTION__); Tensor& output_ids_ptr = outputs.output_ids_ptr; auto const batch_size = static_cast(output_ids_ptr.shape[0]); auto const beam_width = static_cast(output_ids_ptr.shape[1]); auto const max_seq_len = static_cast(output_ids_ptr.shape[2]); TLLM_CHECK_WITH_INFO(params.ite == 0, "Pipeline Parallelism is not supported yet !"); int const ite = params.ite; auto* const input_lengths = params.input_lengths ? params.input_lengths->template getPtr() : nullptr; int* sequence_length = (outputs.sequence_length) ? outputs.sequence_length->template getPtr() : nullptr; Tensor const& logits = params.logits; auto const local_batch_size = logits.shape[0]; invokeSoftMax(outputs, params); sync_check_cuda_error(); if (beam_width > 1) { update_indir_cache_kernelLauncher(outputs.tgt_cache_indirection.template getPtr(), params.src_cache_indirection.template getPtr(), outputs.parent_ids_ptr.template getPtr(), reinterpret_cast( outputs.finished->template getPtr()), sequence_length, input_lengths, batch_size, local_batch_size, beam_width, max_seq_len, params.max_attention_window, params.sink_token_length, mStream); sync_check_cuda_error(); } } template class BaseBeamSearchLayer; template class BaseBeamSearchLayer; } // namespace layers } // namespace tensorrt_llm