from typing import Optional import numpy as np from transformers import AutoModelForCausalLM from ..._utils import pad_vocab_size from ...functional import PositionEmbeddingType, Tensor from ...layers import (MLP, Attention, AttentionMaskType, Embedding, ParallelLMHead, RmsNorm) from ...module import Module from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig, save_checkpoint) from .convert import convert_hf_config, convert_hf_weights class Phi3DecoderLayer(Module): def __init__(self, config: PretrainedConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx tp_group = config.mapping.tp_group tp_size = config.mapping.tp_size self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) layers_range = config.mapping.pp_layers(config.num_hidden_layers) local_layer_idx = layer_idx - layers_range[0] position_embedding_type = PositionEmbeddingType.rope_gpt_neox rope_scaling_short_factors = 1.0 rope_scaling_long_factors = 1.0 original_max_position_embeddings = config.max_position_embeddings if hasattr(config, "longrope_scaling_short_factors"): rope_scaling_short_factors = np.asarray( config.longrope_scaling_short_factors).astype(np.float32) rope_scaling_long_factors = np.asarray( config.longrope_scaling_long_factors).astype(np.float32) original_max_position_embeddings = config.original_max_position_embeddings position_embedding_type = PositionEmbeddingType.long_rope self.attention = Attention( local_layer_idx=local_layer_idx, hidden_size=config.hidden_size, num_attention_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, position_embedding_type=position_embedding_type, rotary_embedding_base=config.rotary_base, max_position_embeddings=config.max_position_embeddings, dtype=config.dtype, attention_mask_type=AttentionMaskType.causal, bias=False, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode, rope_scaling_short_factors=rope_scaling_short_factors, rope_scaling_long_factors=rope_scaling_long_factors, original_max_position_embeddings=original_max_position_embeddings, ) self.mlp = MLP(hidden_size=config.hidden_size, ffn_hidden_size=config.intermediate_size, hidden_act=config.hidden_act, dtype=config.dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode, bias=False) def forward( self, hidden_states: Tensor, attention_mask=None, use_cache=False, kv_cache_params=None, attention_params=None, ): input_layernorm_output = self.input_layernorm(hidden_states) attention_output = self.attention( input_layernorm_output, attention_mask=attention_mask, use_cache=use_cache, kv_cache_params=kv_cache_params, attention_params=attention_params, norm_before_bmm1=True, ) if use_cache: attention_output, presents = attention_output post_attention_input = hidden_states + attention_output post_attention_output = self.post_layernorm(post_attention_input) feed_forward_hidden_states = self.mlp(post_attention_output, ) hidden_states = post_attention_input + feed_forward_hidden_states if use_cache: return (hidden_states, presents) return hidden_states class Phi3Model(Module): def __init__(self, config: PretrainedConfig): super().__init__() self.vocab_embedding = Embedding(num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(Phi3DecoderLayer, config) self.ln_f = RmsNorm(normalized_shape=config.hidden_size, eps=config.norm_epsilon, dtype=config.dtype) def forward( self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, ): args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] hidden_states = self.vocab_embedding(input_ids, *args) hidden_states = self.layers( hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, ) if use_cache: hidden_states, presents = hidden_states hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states class Phi3ForCausalLM(DecoderModelForCausalLM): def __init__(self, config: PretrainedConfig): self.check_config(config) transformer = Phi3Model(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) lm_head = ParallelLMHead(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) super().__init__(config, transformer, lm_head) def check_config(self, config): config.set_if_not_exist('rotary_base', 10000.0) @classmethod def convert_hf_checkpoint(cls, hf_model_dir: str, dtype: Optional[str] = "float16", output_dir: Optional[str] = None, **kwargs): ''' Convert Huggingface checkpoint to TRT-LLM checkpoint ''' hf_model = AutoModelForCausalLM.from_pretrained(hf_model_dir, torch_dtype="auto", trust_remote_code=True) config = convert_hf_config(hf_model.config, dtype=dtype, **kwargs) weights = convert_hf_weights(hf_model, dtype=dtype, **kwargs) if output_dir: save_checkpoint(output_dir, config=config, weights=weights) return {"weights": weights, "config": config}