/* * Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/kernels/sparseAttentionKernels.h" #include namespace tensorrt_llm { namespace kernels { template __global__ void gatherKvPageOffsetsKernel( int32_t* output_kv_page_offsets, // [num_head_kv, batch_size, 2, max_num_pages_per_seq] int32_t* output_seq_lengths, // [num_head_kv, batch_size] int32_t const* kv_page_offsets, // [batch_size, 2, max_num_pages_per_seq] int32_t const* seq_lengths, // [batch_size] SparseAttentionParams const sparse_params, int32_t const batch_size, int32_t const tokens_per_page, int32_t const max_num_pages_per_seq) { // Each CUDA block processes one sequence from the batch for one head. int32_t const head_idx = blockIdx.x; int32_t const batch_idx = blockIdx.y; if (batch_idx >= batch_size) { return; } // Shared memory for reduction. __shared__ typename cub::BlockReduce::TempStorage temp_storage; // Get the range of sparse indices and the sequence length. int32_t const start_offset = sparse_params.sparse_attn_offsets[batch_idx]; int32_t const end_offset = sparse_params.sparse_attn_offsets[batch_idx + 1]; int32_t const total_pages = sparse_params.sparse_attn_offsets[batch_size]; int32_t const num_sparse_pages = end_offset - start_offset; int32_t const original_seq_len = seq_lengths[batch_idx]; // Get global sparse index. int32_t const sparse_idx_global = head_idx * total_pages + start_offset; // Get the base memory offset. shape: [batch_size, 2, max_num_pages_per_seq] size_t const src_base_offset = (size_t) batch_idx * 2 * max_num_pages_per_seq; size_t const dst_base_offset = (size_t) head_idx * batch_size * 2 * max_num_pages_per_seq + src_base_offset; // Initialize the local max page index and number of valid pages. int32_t local_max_page_index = -1; int32_t local_num_valid_pages = 0; // Perform the gather operation. for (int32_t i = threadIdx.x; i < num_sparse_pages; i += blockDim.x) { // Get the source idx and offset. int32_t const src_idx = sparse_params.sparse_attn_indices[sparse_idx_global + i]; if (src_idx < 0) { continue; } // Update the local max page index. local_max_page_index = max(local_max_page_index, src_idx); local_num_valid_pages++; // Get the source and destination offsets. size_t const src_offset_dim0 = src_base_offset + 0 * max_num_pages_per_seq + src_idx; size_t const src_offset_dim1 = src_base_offset + 1 * max_num_pages_per_seq + src_idx; size_t const dst_offset_dim0 = dst_base_offset + 0 * max_num_pages_per_seq + i; size_t const dst_offset_dim1 = dst_base_offset + 1 * max_num_pages_per_seq + i; // Perform the gather operation: read from the sparse location and write to the dense location. output_kv_page_offsets[dst_offset_dim0] = kv_page_offsets[src_offset_dim0]; output_kv_page_offsets[dst_offset_dim1] = kv_page_offsets[src_offset_dim1]; } // Reduce the local max page indices and number of valid pages. Pair local_pair = {local_max_page_index, local_num_valid_pages}; Pair result = cub::BlockReduce(temp_storage).Reduce(local_pair, PairReduceOp()); // Update sequence length for this head and batch. if (threadIdx.x == 0) { int32_t const max_page_index = result.max_val; int32_t const num_valid_pages = result.sum_val; int32_t const ori_valid_pages = (original_seq_len + tokens_per_page - 1) / tokens_per_page; size_t const seq_len_offset = (size_t) head_idx * batch_size + batch_idx; if (num_valid_pages > 0) { int32_t seq_len = original_seq_len - (ori_valid_pages - num_valid_pages) * tokens_per_page; int32_t seq_len_remain = original_seq_len % tokens_per_page; if (max_page_index != ori_valid_pages - 1 && seq_len_remain != 0) { seq_len += tokens_per_page - seq_len_remain; } output_seq_lengths[seq_len_offset] = seq_len; } else { output_seq_lengths[seq_len_offset] = 0; } } } // Host-side launcher function void invokeGatherKvPageOffsets(int32_t* output_kv_page_offsets, int32_t* output_seq_lengths, int32_t const* kv_page_offsets, int32_t const* seq_lengths, SparseAttentionParams const sparse_params, int32_t const batch_size, int32_t const num_head_kv, int32_t const tokens_per_page, int32_t const max_num_pages_per_seq, cudaStream_t stream) { // The grid. dim3 grid(num_head_kv, batch_size, 1); // The block. dim3 block(256, 1, 1); // Shared memory size. size_t smem_size = sizeof(Pair) * 256; // Launch the kernel. gatherKvPageOffsetsKernel<256><<>>(output_kv_page_offsets, output_seq_lengths, kv_page_offsets, seq_lengths, sparse_params, batch_size, tokens_per_page, max_num_pages_per_seq); } } // namespace kernels } // namespace tensorrt_llm